# Distal Radius Fractures: Which Need Surgery?

Dr. Niloofar Dehghan Chief of Trauma - The CORE Institute Associate Professor - Department of Orthopaedic Surgery University of Arizona College of Medicine Phoenix



Center for Orthopedic Research and Education®



• I, Dr. Niloofar Dehghan, have no relevant financial relationships with ineligible companies to disclose.



• To review fracture patterns that meet surgical indications

 To understand what patient population can be treated nonoperatively

## **Distal Radius Fractures**

- Most common orthopaedic injuries
- 1/6 of all fractures seen in ER
- Bimodal distribution:
  - Young patient with high energy force
  - Elderly with falls
- Usually from FOOSH, isolated injuries



### **Fracture Patterns**

- Intra-articular vs extra articular
- Comminuted
- Displaced
- Angulated
- Majority undisplaced: extra articular or min displaced intra articular
- About 30% more complex, comminuted, unstable

### Classification – Fernandez (1997)

 <u>I.</u> Bending-metaphysis fails under tensile stress (Colles, Smith)

• <u>II.</u> Shearing-fractures of joint surface (Barton, radial styloid)

 III. Compression - intraarticular fracture with impaction of subchondral and metaphyseal bone (die-punch)

The Journal of hand surgery. , 1997, Vol.22(4), p.563-571







### Classification – Fernandez (1997)

• <u>IV.</u> Avulsion- fractures of ligament attachments (ulna, radial styloid)



• <u>V.</u> Combined complex - high velocity injuries







## How deformed is it?

Some measurements used to determine extent of deformity:

- 1. Radial inclination
- 2. Volar tilt
- 3. Radial height
- 4. Ulnar variance
- 5. Articular surface step deformity

## **Radial inclination**



- PA view
- Average 23° (16-28)
- Compare to other side
- Acceptable angle is >15°
  ->5° loss is unacceptable
- Loss of inclination  $\rightarrow$ 
  - Increased load across lunate
  - radio-lunate OA & pain (esp if also dorsal inclination)







# Volar Tilt

- On lateral view
- Average is 11<sup>o</sup> volar (compare to other side)
- Doral tilt increases axial load directed onto ulna
  - Decreases moment arm of finger extensors, making wrist less efficient.
  - Increases pain and  $\checkmark$  grip strength
- Unacceptable position:
  - >10º of dorsal tilt from neutral (>20º from "normal" anatomic)



# Radial height



• PA

- Average 12 mm (compare to other side)
- Shortening results from extensive comminution/impaction into metaphysis
- Is worst than angulation deformity
- Unacceptable >5mm
  - Weakness and pain
- Loss pronation/supination





### **Ulnar Variance**

- Average mean ulnar variance = 1 mm (compare to the other side)
- In neutral variance:
  - 80% of load is born by radius and 20% by ulna
- 2.5 mm increase in ulnar variance
  - Increase load ulno-carpal joint to 40%
- Increased variance can also cause impingement

Positive ulnar variance

Negative ulnar variance









### Treatment

- Goals:
  - Restore articular congruity, radial anatomy, radio-ulnar relationship
  - Obtain union
  - Restore ROM
- Surgery :
  - Unstable/displaced/ intra-articular fractures
  - Young, active patient
  - Anatomic reduction and stable internal fixation
- Non-operative:
  - Stable fracture pattern
  - Elderly

### Which fractures need fixation?

#### Fracture pattern



#### Patient factors



### **Fracture characteristics**

- Fracture can be treated non-op if:
  - -Closed
  - -Minimally displaced
  - -Good alignment
  - -Stable

### **Acceptable reduction**

• Radial inclination > 15  $^{\circ}$ 



• Radial shortening < 5 mm



• Dorsal angulation  $< 10^{\circ}$ 



• Articular step-off < 2mm

# Indications for Surgical Treatment

- Open injury
- Volar shear
- Unstable fractures

- (Radial inclination < 15°, Dorsal tilt > 10°, shortening >5mm)

- Fracture dislocations
- Articular step-off >2mm

## **Unstable fractures**

- Very displaced intra-articular fractures
- Gross initial displacement
- Volar/dorsal comminution
- Dorsal angulation > 20° from normal
- Shortening >5mm
- Volar shear fracture

• May benefit from surgical fixation, depending on patient factors







Carpal subluxation











### What about patient factors?

• Elderly with distal radius fractures



Elderly >65 years tolerate poorer radiological outcome well

 no clear evidence of the clinical superiority of distal radius fracture surgery among older adults at one year.

### Surgical Plating vs Closed Reduction for Fractures in the Distal Radius in Older Patients: A Randomized Clinical Trial

Combined Randomised and Observational Study of Surgery for Fractures in the Distal Radius in the Elderly (CROSSFIRE) Study Group; Andrew Lawson <sup>1 2</sup>, Justine M Naylor <sup>1 2</sup>, Rachelle Buchbinder <sup>3 4</sup>, Rebecca Ivers <sup>5</sup>, Zsolt J Balogh <sup>6 7</sup>, Paul Smith <sup>8</sup>, Wei Xuan <sup>9</sup>, Kirsten Howard <sup>10</sup>, Arezoo Vafa <sup>1</sup>, Diana Perriman <sup>8</sup>, Rajat Mittal <sup>2</sup>, Piers Yates <sup>11</sup>, Bertram Rieger <sup>11</sup>, Geoff Smith <sup>12</sup>, Sam Adie <sup>12 13</sup>, Ilia Elkinson <sup>14</sup>, Woosung Kim <sup>14</sup>, Jai Sungaran <sup>15</sup>, Kim Latendresse <sup>16 17</sup>, James Wong <sup>18</sup>, Sameer Viswanathan <sup>19</sup>, Keith Landale <sup>19</sup>, Herwig Drobetz <sup>20</sup>, Phong Tran <sup>21</sup>, Richard Page <sup>22 23</sup>, Sally Beattie <sup>23</sup>, Jonathan Mulford <sup>24</sup>, Ian Incoll <sup>7 25</sup>, Michael Kale <sup>25</sup>, Bernard Schick <sup>26</sup>, Trent Li <sup>26</sup>, Andrew Higgs <sup>27</sup>, Andrew Oppy <sup>28</sup>, Ian A Harris <sup>1 2 29</sup>

Affiliations + expand

PMID: 33439250 PMCID: PMC7807386 DOI: 10.1001/jamasurg.2020.5672

**Free PMC article** 

- 300 study participants, Mean age, 71 years
- Initial fracture displacement: >10° dorsal angulation, >3-mm shortening, or >2mm articular step
- Results:
  - No clinically important difference in 12-month Patient-Rated Wrist Evaluation scores (mean 20 for ORIF, 22 for non-op)
  - No clinically important differences were found in quality of life, wrist pain, or bother at 3 and 12 months.
  - No significant difference was found in total complications
- **CONCLUSIONS:** no differences in improvement in wrist pain or function at 12 months from surgical fixation over closed reduction for displaced distal radius fractures in older people.





### • 70 year old male

- Fall from height
- Hip fracture, and wrist injury















• 80 F

• 65 M tennis player

• 45 F alcoholic

- 22 M
  - schizophrenic under psych admission



### What to check at post-op visit?















## Summary

- Surgical fixation
  - Young, healthy, active
  - Unstable fracture
  - Loss of reduction
  - Volar shear
  - Open

- Non-op treatment:
  - Stable or well reduced
  - Most elderly

### Niloofar.dehghan@thecoreinstitute.com