

Pharmacogenetics in Clinical Practice: Focus on Opioids

Melissa Murfin, PharmD, BCACP, PA-C Jeanine Gargiulo, PA-C

University of Maryland, Baltimore

Disclosures

- Jeanine
 - Ethicon
 - Published author in included paper
- Melissa Murfin
 - Volunteer member of CPIC

Objectives

PGX Potential

- Minimize drug toxicity
- Maximize drug efficacy
- Predict patients with alternate response to drug intervention
- Help practitioners understand the variability of drug responses
- Assist in drug discovery and development

Pharmacogenetic Prescribing

Decrease potential for adverse drug reactions Improve likelihood of medication response

Pharmacogenetic Prescribing

CURRENTLY

- One size fits all
- Works for up to 40% of patients

CUSTOMIZED

- Drug or dose specifically chosen for the patient
- Ideal for 60% of the of the population
- Decreased risk of ADR

Biomarkers in Practice

Adverse drug reactions (ADRs)

US Emergency Dept (ED) visits from 2017 – 2019

National Electronic Injury Surveillance System-Cooperative Adverse Drug Event Surveillance Project

38.6% led to hospitalization

6.1 per 1000 due to ADRs

https://pubmed.ncbi.nlm.nih.gov/34609453/

Drug Response

https://www.ncbi.nlm.nih.gov/books/NBK361016/#:~:text=Studies%20involving%20adults%20have%20shown,within%20one%20to%20two%20years.

Pharmacogenetics

- Polymorphisms
 - Genetic variation among individuals within a specific species or population
 - Promotes genetic diversity
 - Ex: blood types

Single Nucleotide Polymorphisms (SNPs)

- Single nucleotide exchanged for another at a point on the individual's genome
- Normal genetic variation
- Some cause change in amino acid or protein code
- Some have NO effect
- Genotype

Pharmacogenetics

Pharmacogenetic Phenotypes

Variability in genes that encode pharmacokinetic determinants

- Metabolizing enzymes
- Determine therapeutic response and ADRs
- Some are monogenic
 - Ex: fast vs slow acetylation
- Some are multigenic
 - Ex: CYP 450 Extensive vs poor metabolizers

PHENOTYPE	GENOTYPE	EFFECTS	
 A. extensive or normal drug metabolizers (EM) (75 – 85%) 	homozygous or heterozygous for wild type allele.	Normal metabolism.No dose modification needed.	
B.intermediate metabolizer phenotype (IM) (10 - 15%)	heterozygous for the wild type allele	may require lower than average drug dose for optimal therapeutic response.	
C. poor metabolizers (PM) (5 – 10%)	mutation or deletion of both alleles	accumulation of drug substrates in their systems with attendant effects.	
D. ultrarapid metabolizers (UM) (2 – 7%)	gene amplification .	drug failure	

Metabolic Phenotypes

Clinical Phenotypes

Ultrarapid metabolizer

- Drug may be rendered ineffective
- Prodrug may have greater efficacy
- Activity score > 2

Extensive (normal) metabolizer

- · Metabolism proceeds as expected
- Activity score 1 2

Intermediate metabolizer

- Diminished or normal metabolism
- Activity score 0.5

Poor metabolizer

- Drug may become toxic
- Prodrug may be ineffective
- Activity score 0

FDA Table of Pharmacogenetic Associations

- Initially published 2020
- Now includes 300+ drugs
- Pharmacogenetic associations that support therapeutic recommendations
- Evidence-based information on safety or response
- Evidence of only pharmacokinetic impact
- Statins, SSRIs SNRI, beta blockers, PPIs, anticoagulants

CPIC Guidelines

Clinical Pharmacogenetics Implementation Consortium

https://cpicpgx.org/

Pharmacogenetic Guidelines

- Warfarin
- Clopidogrel
- Allopurinol
- Statins
- SSRIs
- NSAIDs

Opioids in PGx

CYP2D6

Codeine, tramadol, hydrocodone, oxycodone, methadone

Ultrarapid and poor metabolizers

Clinical Pharmacogenetics Implementation Consortium Guidelines for Cytochrome P450 2D6 Genotype and Codeine Therapy: 2014 Update

KR Crews¹, A Gaedigk^{2,3}, HM Dunnenberger¹, JS Leeder^{2,3}, TE Klein⁴, KE Caudle¹, CE Haidar¹, DD Shen^{5,6}, JT Callaghan^{7,8}, S Sadhasivam^{9,10}, CA Prows^{11,12}, ED Kharasch¹³ and TC Skaar⁷

Phenotype	Implications for codeine metabolism	Recommendations for codeine therapy	Classification of recommendation for codeine therapy ^a	Considerations for alternative opioids
Ultrarapid metabolizer	Increased formation of morphine following codeine administration, leading to higher risk of toxicity	Avoid codeine use due to potential for toxicity.	Strong	Alternatives that are not affected by this CYP2D6 phenotype include morphine and nonopioid analgesics. Tramadol and, to a lesser extent, hydrocodone and oxycodone are not good alternatives because their metabolism is affected by CYP2D6 activity. ^{b,c}
Extensive metabolizer	Normal morphine formation	Use label-recommended age- or weight-specific dosing.	Strong	_
Intermediate metabolizer	Reduced morphine formation	Use label-recommended age- or weight-specific dosing. If no response, consider alternative analgesics such as morphine or a nonopioid.	Moderate	Monitor tramadol use for response.
Poor metabolizer	Greatly reduced morphine formation following codeine administration, leading to insufficient pain relief	Avoid codeine use due to lack of efficacy.	Strong	Alternatives that are not affected by this CYP2D6 phenotype include morphine and nonopioid analgesics. Tramadol and, to a lesser extent, hydrocodone and oxycodone are not good alternatives because their metabolism is affected by CYP2D6 activity; these agents should be avoided. ^{b,c}

Table 2 Codeine therapy recommendations based on cytochrome P450 2D6 (CYP2D6) phenotype

Clin Pharmacol Ther. 2014 Apr;95(4):376-82

AORI PGx Study

The Journal of Arthroplasty Volume 37, Issue 6, Supplement, June 2022, Pages S76-S81

Proceedings of The Knee Society 2021

Prospective Randomized Study Using Pharmacogenetics to Customize Postoperative Pain Medication Following Hip and Knee Arthroplasty

William G. Hamilton MD ^a, Jeanine M. Gargiulo PA-C ^a, Thomas R. Reynolds BS ^b, Nancy L. Parks MS

AORI PGx Study

Control

- 4.2 avg pain score
- 162.6 mg MEQ

Custom

- 3.1 avg pain score
- 86.7 mg MEQ

- 24/107 (22.4%) had genetic variations
- Custom postop pain prescribing based on PGx testing can achieve lower pain levels while reducing consumption of pain medication

Patient Potential

Simple, painless test

Typically, 1 in a lifetime

Easy to interpret information

Insight into medication sensitivity

- Dosage changes
- Medication avoidance

Confidence in medical decision-making process

Ability to become one's own advocate

Methodology

Practitioner orders a pharmacogenetic test

Collect specimen, buccal cells

Send to the lab/prep for pickup

Specimen test run by the lab

Data analyzed and report generated

Practitioner receives and reviews results with patient

Barriers

PGx lab testing options

Single Gene	Multigene
🔎 LabCorp	
Quest	OneOme
Point of care	Invitae
Spartan Rx	
Luminex	GeneSight

PGx testing

https://www.sciencedirect.com/science/article/abs/pii/S1544319119304522

Insurance Coverage

United Healthcare

Blue Cross Blue Shield

- Psychiatric medication pharmacogenetic testing:
 - Pt with MDD or GAD diagnosis
 - Pt has failed at least one antidepressant
 - Specific multigene panels

- CYP2D6, CYP2C9, and CYP2C19 for specific medications
- PGx testing for warfarin
- Once per lifetime

Ethical Barriers

Ethics & Barriers

People are treated unfairly due to differences in their DNA that increase their chance of getting a certain disease

Insurance

• Refusing coverage to pt with genetic predisposition to cancer diagnosis

Employers

Using DNA information to hire or fire workers

Genetic Information Non-discrimination Act, 2008

Federal law protecting Americans from being treated unfairly because of differences in DNA that may affect their health

Clinician Barriers

Familiarity

- Little or no exposure to principles of PGx
- Ordering logistics
- Confidence in clinical correlation
- Not widely used in clinical practice
- EMR charting limitations

Patient education

- Time and workload burden
 - Extra diagnostic step

Champions of PGx

PGx testing will improve prescribing for all drugs!

While it can help with many drugs, not all variability in drug response is from genetics

Many drugs have wide therapeutic ranges

Fact

Incorporating PGx knowledge in treatment will always ensure better patient outcomes

Fiction

The Truth

PGx does not mitigate for <u>extrinsic</u> factors

Patient complianceDrug interactions

Social factors

PGx does not mitigate for all <u>intrinsic</u> factors Organ dysfunction (kidney and liver)
Physiologic status (pregnancy)
Disease state (diabetic, heart failure)

Age

Summary

Insurance coverage for pharmacogenetic testing is improving but costs are still high Access to care is problematic for the uninsured or underinsured Choose a lab with testing that covers the drugs and variants common to your patient population

Guidelines are available for clinical interpretation for some medications

Genetic variations can impact medication toxicity and/or response

PGx Take Home

Informed prescribing

Develop patient confidence in treatment

Increase patient compliance

Improve accuracy of drug choice and dosage

Allow improvements in drug development

Clinical Pearls

Contact Info

Melissa Murfin

mmurfin@umaryland.edu

Jeanine Gargiulo jgargiulo@umaryland.edu

Mant

Thank you!

References

- Chakrabarty Follow, Sourav. "Pharmacogenetics." *SlideShare*, https://www.slideshare.net/souravpharma/pharmacogenetics-41339376.
- Fiona, et al. "Withdrawn Drugs." Withdrawn Drugs, http://chembl.blogspot.com/2018/06/withdrawn-drugs.html.
- "G6PD Deficiency-Fava Bean Intolerance." *VeganHealth.org*, 5 Mar. 2018, https://veganhealth.org/g6pd-deficiency-fava-bean-intolerance/.
- Hamilton, William G., et al. "Prospective Randomized Study Using Pharmacogenetics to Customize Postoperative Pain Medication Following Hip and Knee Arthroplasty." *The Journal of Arthroplasty*, vol. 37, no. 6, 2022, https://doi.org/10.1016/j.arth.2022.02.037.
- Hinnovic. "Pharmacogenomics: From Promises to Public Health Benefits." *Hinnovic*, 15 Jan. 2008, https://www.hinnovic.org/post/pharmacogenomics-from-promises-to-public-health-benefits.
- Ma, Zhiyuan, et al. "Warfarin Sensitivity Is Associated with Increased Hospital Mortality in Critically III Patients." *PLOS ONE*, Public Library of Science, 5 May 2022, https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0267966.
- "Pharmacogenomics Virtual Summit Series." *American Medical Association*, American Medical Association, 9 Feb. 2021, https://www.ama-assn.org/delivering-care/precision-medicine/pharmacogenomics-virtual-summit-series.
- Pirmohamed, M. "Pharmacogenetics and Pharmacogenomics." *British Journal of Clinical Pharmacology*, Blackwell Science Inc, Oct. 2001, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014592/#b1.
- Pirmohamed, Munir. "Warfarin: Almost 60 Years Old and Still Causing Problems." British Journal of Clinical Pharmacology, Blackwell Science Inc, Nov. 2006, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885167/.
- Shukla Follow MBBS, Dr. Prashant. "Pharmacogenetics and Pharmacogenomics." Share and Discover Knowledge on SlideShare, https://www.slideshare.net/prashantshukla927/pharmacogenetics-and-pharmacogenomics-63662377.