CAR T-cells: A New Era of Cancer Therapy

Julie Klinger, MS, PA-C Baylor College of Medicine Texas Children's Hospital

Objectives

At the conclusion of this session, participants should be able to:

- Describe what CAR T-cell therapies are and how they target cancer cells
- Identify which cancers can be treated with CAR Tcells
- Recognize both acute and long-term complications/side effects of CAR T-cell therapies

Cancer Therapy

- Surgery
- Radiation
- Chemotherapy
- Immunotherapy

CAR T-cells:

T-lymphocytes that are genetically modified to produce chimeric antigen receptors that target antigens found on the surface of tumor cells

Chimeric Antigen Receptor

Combines antibody derived antigen recognition domain with T-cell receptor intracellular domain

https://www.mskcc.org/news/model-ts-fda-approves-first-car-t-cells-cancer

Farkona S, BMC Medicine.

Chimeric **Antigen** Receptor Target Antigens

- Must be present on the surface of cancer cell
- Ideally present on all cancer cells
- Ideally not present on normal cells

CAR T-cell Products

FDA NEWS RELEASE

FDA approval brings first gene therapy to the United States

For Immediate Release:

August 30, 2017

This release was updated on Aug. 30, 2017 to correctly identify the FDA designations granted to Kymriah.

Español (/news-events/comunicados-de-prensa/primera-terapia-genetica-en-los-estados-unidos-es-aprobada-por-la-fda)

The U.S. Food and Drug Administration issued a historic action today making the first gene therapy available in the United States, ushering in a new approach to the treatment of cancer and other serious and life-threatening diseases.

The FDA approved Kymriah (tisagenlecleucel) for certain pediatric and young adult patients with a form of acute lymphoblastic leukemia (ALL).

FDA Approved CAR T cells

CAR T-cell Product	Target	Indications Approve		ORR	CR
Tisagenlecleucel (tisa-cel)	CD19	Children and adults up to 25 years2017,with R/R B-cell ALL2018Adults with B/B B-cell lymphoma		81%	60%
Axicabtagene ciloleucel (Axi-cel)	CD19	Adults with R/R B-cell Lymphoma Adults with R/R follicular lymphoma	82% 94%	54% 79%	
Brexucabtagene autoleucel (Brex-cel)	CD19	Adults with R/R Mantle Cell Lymphoma	2020	93%	67%
Lisocabtagene maraleucel (Liso-cel)	CD19	Adults with R/R B-cell Lymphoma	2021	73%	53%
Idecatagene vicleucel (Ide-cel)	BCMA	Adults with R/R multiple myeloma	2021	72%	28%
Ciltacabtagene autoleucel (Cilta-cel)	BCMA	Adults with R/R multiple myeloma	2022	97%	65%

BCMA=B-cell maturation antigen; R/R=relapsed/refractory; ORR=overall response rate; CR=complete response rate

CAR T-cell Toxicities

Lymphodepletion

- Prior to receiving CAR T-cells, patients receive lymphodepleting chemotherapy to create a favorable environment for CAR T-cell proliferation
- Chemotherapy side effects:
 - Nausea, vomiting, decreased appetite
 - Prolonged cytopenias
 - Infection

Infectious Complications

Hill JA, Seo SK. Blood

CANCER AND HEMATOLOGY CENTERS

GIVING LIFE TO POSSIBLE

Cytokine Release Syndrome (CRS)

Acute systemic inflammatory response due to T-cell activation and elevated cytokine levels

CRS Parameter	Grade 1	Grade 2	Grade 3	Grade 4	
Fever*	Temperature ≥38°C	Temperature ≥38°C	Temperature ≥38°C	Temperature ≥38°C	
		With			
Hypotension	None	Not requiring vasopressors	Requiring a vasopressor with or without vasopressin	Requiring multiple vasopressors (excluding vasopressin)	
		And/or [†]			
Hypoxia	None	Requiring low-flow nasal cannulat or blow-byRequiring high-flow nasal can- nulat, facemask, nonrebreatherRequiring 		Requiring positive pressure (eg, CPAP, BiPAP, intubation and mechanical ventilation)	

ASTCT Consensus Grading

Lee et al. Biol Blood Marrow Transplant

CRS Treatment

- Supportive care
 - Exclude infection: blood cultures and empiric antibiotics
 - Antipyretics, IVFs, oxygen, vasopressers, mechanical ventilation
- Tocilizumab (anti IL-6)
- Corticosteroids

Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)

ASTCT Consensus Grading

Neurotoxicity Domain	Grade 1	Grade 2	Grade 3	Grade 4	
ICE score*	7-9	3-6	0-2	0 (patient is unarousable and unable to perform ICE)	
Depressed level of consciousness	Awakens spontaneously	Awakens to voice	Awakens only to tactile stimulus	Patient is unarousable or requires vigorous or repetitive tactile stimuli to arouse. Stupor or coma	
Seizure	N/A	N/A	Any clinical seizure focal or gen- eralized that resolves rapidly or nonconvulsive seizures on EEG that resolve with intervention	Life-threatening prolonged seizure (>5 min); or Repetitive clinical or electrical seizures without return to baseline in between	
Motor findings [‡]	N/A	N/A	N/A	Deep focal motor weakness such as hemiparesis or paraparesis	
Elevated ICP/ cerebral edema	N/A	N/A	Focal/local edema on neuroimaging [§]	Diffuse cerebral edema on neuroimaging; decere- brate or decorticate posturing; or cranial nerve VI palsy; or papilledema; or Cushing's triad	

ICE

- Orientation: orientation to year, month, city, hospital: 4 points
- Naming: ability to name 3 objects (eg, point to clock, pen, button): 3 points
- Following commands: ability to follow simple commands (eg, "Show me 2 fingers" or "Close your eyes and stick out your tongue"): 1 point
- Writing: ability to write a standard sentence (eg, "Our national bird is the bald eagle"): 1 point
- Attention: ability to count backwards from 100 by 10: 1 point

ICANS Treatment

- Supportive care
- Corticosteroids
- Anakinra (IL-1 receptor antagonist) *

Hypogammaglobulinemia

- Due to B-cell aplasia
- "On target, off tumor" toxicity
- Treatment: IVIG q4-8 weeks
- Vaccination

Kampouri et al. Expert Rev Hematol

Relapse

- Relapse can be due to:
 - loss of CAR T-cell persistence
 - Antigen escape (i.e. CD 19 negative relapse)

Other Side Effects

- Secondary malignancies
- False positive HIV testing

Investigational CAR T-cells

Clinicaltrials.gov

Barriers to Success

- Target antigens
- Tumor antigen heterogeneity
- Trafficking
- Physical barriers/microenvironment
- Proliferation/persistence
- Antigen escape
- Manufacturing time

Future Directions

- Targeting different antigens
- Bispecific CARs
- Allogeneic CARs
- CAR T-cells as first line therapy

Conclusions

- CAR T-cells are genetically modified T-cells used to target specific tumor antigens
- There are many toxicities associated with current CAR T-cell products including CRS, ICANS, and hypogammoglobulinemia
- Though there is still much to be learned about and improved on with CAR T-cell therapies, they can provide prolonged remission in patients who otherwise may not have achieved remission

References

- How Immunotherapy Is Used to Treat Cancer. American Cancer Society. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/what-is-immunotherapy.html. Published December 27, 2019. Accessed July 30, 2020.
- FDA approval brings first gene therapy to the United States. U.S. Food and Drug Administration. https://www.fda.gov/news-events/pressannouncements/fda-approval-brings-first-gene-therapy-united-states. Published August 30, 2017. Accessed July 30, 2020.
- Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. *N Engl J Med*. 2018;378:439–48.
- Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. *N Engl J Med*. 2019;380(1):45-56.
- Neelapu SS, Locke FL, Bartlett NL et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017; 377:2531-2544.
- Abramson JS, Palomba ML, Gordon LI. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. *Lancet*. 2020; 396(10254): 839-852.
- Wang M, Munoz J, Goy A. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2020; 382:1331-1342.
- Munshi NC, Anderson LD, Shah N. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021; 384:705-716.
- Berdeja JG, Madduri D, Usmani SZ et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. *Lancet*. 2021; 398 (10297): P314-324.
- Wudhikarn K, Perales MA. Infectious complications, immune reconstitution, and infection prophylaxis after CD19 chimeric antigen receptor T-cell therapy. *Bone Marrow Transplant*. 2022 Oct;57(10):1477-1488.
- Hill JA, Seo SK. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. *Blood.* 2020;136:925–35.. doi: 10.1182/blood.2019004000.
- Kymriah [prescribing information]. East Hanover, NJ: Novartis Pharmaceuticals Corp; 2018.
- Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turt CJ, Brudno JN, et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic toxicity Associated with Immune Effector Cells. *Biol Blood Marrow Transplant.* 2019; 25:625-38.
- Kampouri E, Walti CS, Gauthier J, Hill JA. Managing hypogammaglobulinemia in patients treated with CAR-T-cell therapy: key points for clinicians. Expert Rev Hematol. 2022;15:305–20.

