Navigating Through Common Thyroid Disorders

Ji Hyun Chun (CJ), MPAS, PA-C, BC-ADM OC Diabetes & Endocrinology, Fountain Valley, CA Immediate Past President, American Society of Endocrine PAs Senior Medical Science Liaison, Corcept Therapeutics

Disclosure

• None

*Employee of Corcept Therapeutics. No conflict of interest related to this topic.

Tribute

Daniel Duick, MD, MACE 1941 – 2022

Objectives

- Review different thyroid function tests and order appropriate panel
- Understand the differences between synthetic (i.e., Levothyroxine) vs desiccated thyroid hormones (i.e., Armour thyroid)
- Strengthen your skills on working up low TSH
- Differentiate thyroid nodule(s) that can be monitored vs further evaluated

Common Thyroid Disorders

Hypothalamic-Pituitary-Thyroid Axis

- Hypothyroidism
 - Affects ~5% of the US population
 - 10x more common in women
 - More common after age 60 years
- Hyperthyroidism (thyrotoxicosis)
 - Affects ~1.2% of the US population
 - 2-10x more common in women
- Nodular thyroid disease
 - Affects 4-7% (as detected by palpation); 19–68% (as detected on ultrasound)
 - Malignant in 4.0% to 6.5%

T3 = triiodothyronine; T4 = thyroxine; TRH = thyrotropin releasing hormone; TSH = thyroid stimulating hormone

Case: 46yo female, annual exam

- Medical hx:
 - Hypothyroid diagnosed in her 20s
 - Lately, she's been noticing fatigue, hair thinning, dry skin, and trouble losing weight
 - Otherwise, non-contributory
- Current meds/OTC
 - Levothyroxine 50mcg, MVI, biotin
- Family hx:
 - Mom and maternal grandmother with hypothyroidism
- Physical examination
 - Normal thyroid exam, BMI 27. Otherwise, non-contributory

Q

- Which of the following thyroid tests would be <u>least</u> helpful for evaluating hypothyroidism?
 - 1. TSH
 - 2. Free T4
 - 3. Free T3
 - 4. Anti-thyroid peroxidase (TPO) antibodies

- TSH
- Free T4
- Total T4
- Free T3
- Total T3
- T3 resin uptake
- Free thyroxine index (FTI)
- Reverse T3
- Urinary iodine

Thyroid Tests

- Thyroglobulin
- Thyroglobulin ab
- Anti-TPO ab
- Thyroid stimulating immunoglobulin (TSI)
- Thyrotropin receptor antibody (TRAb)
- Thyroid binding inhibitory immunoglobulin (TBII)

- Thyroid ultrasound
- Radioactive iodine uptake (RAIU). Aka Thyroid uptake
- Thyroid scan (scintigraphy)
- Fine Needle Aspiration (FNA)
- Core biopsy
- Molecular testing

Tests for Common Thyroid Diseases

Hypothyroidism	Hyperthyroidism/ Thyrotoxicosis	Nodular Thyroid Disease
 TSH Free T4 During pregnancy, check FTI or total T4 (x 1.5 reference range) Anti-TPO Ab If needed 	 TSH Free T4 Total T3 TRAb or TSI ESR/CRP if subacute thyroiditis is suspected Thyroid ultrasound, uptake/scan if needed 	 TSH (if low, follow hyperthyroid evaluation) Thyroid/neck ultrasound FNA/core biopsy if criteria are met

CRP = *C*–*reactive protein; FNA* = *fine-needle aspiration; FTI* = *free thyroxine index; TPO* = *thyroid peroxidase; TRAb* = *thyroid stimulating hormone receptor antibody; TSH* = *thyroid stimulating hormone; TSI* = *thyroid stimulating immunoglobulin; ESR* = *erythrocyte sedimentation rate.* Adapted from Garber J, et al. *Endocr Pract.* 2012;18:988-1028.

Case (cont.)

- Current labs:
 - TSH 7.5 mIU/L (0.45-4.5)
 - FT4 2.5 ng/dL (0.8-1.8)
 - CBC/CMP/UA/iron/B12/vitD all WNL

Q

- Based on Emily's available thyroid labs, which of the following is the most likely diagnosis at this time?
 - TSH 7.5 mIU/L (0.45-4.5)
 - FT4 2.5 ng/dL (0.8-1.8)
- A. Primary hypothyroidism
- B. Primary hyperthyroidism
- C. Secondary hypothyroidism
- D. Secondary hyperthyroidism

Lab Interpretation

Case (cont.)

- Current labs:
 - TSH 7.5 mIU/L (0.45-4.5)
 - FT4 2.5 ng/dL (0.8-1.8)
 - \rightarrow Secondary hyperthyroidism
 - \rightarrow consider endocrine referral?

Q

Which vitamin B can interfere with thyroid lab assays?

- A. Vitamin B1 (thiamine)
- B. Vitamin B3 (niacin)
- C. Vitamin B5 (pantothenic acid)
- D. Vitamin B7 (biotin)

Biotin Interference in Thyroid Tests

- Daily requirement: 30 μ g. OTC dose up to 100 mg (3000x)
- Favorable safety reports with dose of 300 mg/d
- Interferes with many different lab tests (thyroid/steroid/polypeptide hormones, tumor markers, vitamins, infectious disease serologies)
- Interference in thyroid tests
 - May falsely lower TSH, PTH
 - May falsely elevate free T4, free T3
- Be aware! Ask the patient!
- For patients taking < 100 mg/day, stop biotin 48 h before testing (longer for higher doses)

Samarasinghe S, et al. Endocr Pract. 2017;23(8):989-998.

Case (cont.)

- Emily was asked to hold her MVI and biotin for 1 week and repeat her thyroid labs
- New labs:
 - TSH 1.7 mIU/L (0.45-4.5)
 - FT4 1.4 ng/dL (0.8-1.8)
- Emily asks about "natural thyroid hormones" as she has read on internet that it is better to take natural products

Hypothyroidism

Common causes

- Autoimmune disease (Hashimoto thyroiditis)-most common in US
- Iodine deficiency-most common worldwide
- Surgery/radiation therapy
- Medications (eg, lithium)
- Treatment of choice: levothyroxine (LT4)*
 - What about T3?
 - Evidence does not support use of LT3/LT4 combinations⁺

LT3 = liothyronine

*Strong recommedation. Moderate quality evidence (Jonklaas J et al. *Thyroid*. 2014;24(12):1670-1751). [†]Grade B recommendation because of unresolved issues raised by studies that report some patients prefer, and some patient subgroups may benefit from, LT4 and LT3 combination (Garber J, et al. *Endocr Pract*. 2012;18(6):988-1028).

T3-T4 Pharmacology

- Thyroxine (T4)
 - Half life = 7 days
 - Stable/long acting
- Triiodothyronine (T3)
 - 4x potent than T4
 - Half life = 0.75 days
 - Onset of action: 2–4 hours
 - Rapidly absorbed
 - Marked blood level fluctuations
 - May falsely suppress TSH if taken close to bloodwork

Q

- The T3:T4 ratio in humans is about 1:13. What is the T3:T4 ratio in desiccated thyroid hormones (eg, Armour Thyroid, Nature-Throid)?
- A. 1:1
- B. 1:4
- C. 1:10
- D. 1:20

T3/T4

- Armour thyroid
 - 1grain=60mg: contains T3 9mcg, T4 38mcg
- Nature-throid & Westhroid
 - 1grain=65mg: contains T3 9mcg, T4 38mcg

* T3:T4 ratio in desiccated thyroid= 1:4

Approach

- Levothyroxine is the choice of treatment for hypothyroidism
- If patient remains symptomatic even with TSH in target AND thorough history and exam have r/o other concomitant conditions (depression, sleep disturbance, nutrition, anemia, subtle chronic infection, stress, etc)
- → Careful consideration of adding T3 or switching to desiccated thyroid hormone
 - * Evidence does not support routine use
 - * 1 grain desiccated thyroid \rightarrow ~90-100mcg LT4

Thyrotoxicosis

• How to work it up

Q

- What is the most common cause of hyperthyroidism?
 - 1. Graves' disease
 - 2. Toxic (single) adenoma
 - 3. Toxic multinodular goiter
 - 4. TSH producing pituitary adenoma
 - 5. Thyroiditis (acute/subacute/painless)

Common causes of low TSH

- latrogenic/factitious
- Graves' disease
- Thyrotoxic nodule(s)
- Subacute thyroiditis
- Acute illness (euthyroid sick syndrome)

Common causes of low TSH

- latrogenic/factitious
- Graves' disease
- <u>Thyrotoxic nodule(s)</u>
- <u>Subacute thyroiditis</u>
- Acute illness
 (euthyroid sick syndrome)

- Clues from HPI
 - Graves' orbitopathy / dermopathy
 - \rightarrow Graves' disease
 - Goiter
 - → Graves' disease / toxic nodule(s)
 - Recent URI followed by pain in thyroid area
 - \rightarrow subacute thyroiditis

Repeat TSH with:

- Free T4
- Total T3
- TSI or TRAb (thyrotropin receptor ab)
- ESR/CRP (if suspecting subacute thyroiditis)
- Thyroid ultrasound (if suspecting toxic nodule(s))
- Uptake/scan (if diagnosis is unclear or planning RAI treatment)

	Graves'	Toxic nodule(s)	Thyroiditis
T3 and/or T4	\uparrow	\uparrow	\uparrow
TRAb / TSI	(+)	(-)	(-)
ESR			\uparrow
Thyroid US	Diffusely enlarged gland with hypervascularity	Nodular thyroid	
Uptake/scan	Diffusely increased uptake	Localized single or multiple increased uptake: "hot nodule(s)"	Decreased/absent uptake

Treatment: Graves Disease and Toxic Nodule(s)

	Graves Disease	Toxic Nodule(s)	
Control symptoms	Especially cardiac – beta blockers		
Control thyrotoxicosis	 Antithyroid medication [methimazole, propylthiouracil (PTU)] Radioactive iodine ablation Surgery 		
Medications	 Methimazole Preferred over PTU except during 1st trimester pregnancy and thyroid storm Potential side effects: pruritis/rash (common), agranulocytosis/hepatotoxicity (rare) PTU: second-line agent due to rare but potentially serious hepatotoxicity 		
Considerations	Chance of spontaneous resolution - Consider medical therapy first	No spontaneous resolution - Consider definitive treatment	

Subacute thyroiditis

- Destruction of thyroid follicular cells: often post viral (URI)
- Characterized by painful/tender thyroid
- Most cases transient
- Tx
 - Symptomatic
 - Beta blockers
 - NSAIDs, glucocorticoids

Thyroidmanager.org (accessed 9/10/2016)

Nodular thyroid disorders

Case

- 60-year-old female presents for thyroid incidentaloma that was found during her carotid ultrasound. She denies any difficulty or pain with swallowing and no history of head/neck irradiation.
- PMHx: HTN, hyperlipidemia
- Meds/OTC: statin, CCB, MVI
- FHx: no thyroid d/o including malignancy (non-contributory)
- P/E: palpable mass on right lobe w/o lymphadenopathy
- Lab 3mo ago: All wnl including TSH 3.4 mIU/L (0.45-4.5)

Prevalence

- Palpable: 5% of women, 1% of men
- On thyroid US: 19-68%
- More common in women and in elderly
- Vast majority are benign

Goal: exclude malignancy (7-15% depending on age, sex, other risk factors)

Choice of test: Fine Needle Aspiration (FNA)

Vander. Ann Intern Med. 1968 / Tunbridge. Clin Endocrinol (Oxf). 1977 / Tan Ann Intern Med. 1997 / Guth. EurJ Clin Invest. 2009 / Hegedus. NEngl J Med. 2004 / Mandel. JAMA. 2004

First step

- Thyroid nodule detected by palpation or imaging
- \rightarrow HPI (risk factors) and TSH
- \rightarrow If TSH is low and hyperthyroid
- → Order uptake/scan
- \rightarrow If the nodule is "hot," treat accordingly

Otherwise, further work up to r/o malignancy

Risk factors for Malignancy

- Hx of head and neck irradiation
- FHx of medullary thyroid cx, MEN 2, or papillary thyroid cx
- Age <14 or >70 years
- Male sex
- Persistent dysphonia, dysphagia, or dyspnea
- Cervical adenopathy
- Growth of the nodule
- Firm or hard nodule consistency
- Fixed nodule

Thyroid Nodule Management, Endocr Pract. 2016;22(Suppl 1)

Case (cont.)

- Ordered thyroid U/S:
 - Goiter noted with 1.8cm nodule in right thyroid lobe
 - Rest of the gland looked unremarkable

Case (cont.)

- Called radiology and requested to describe the nodule more in detail and to report according to the TI-RADS
 - Thyroid nodule on right superior lobe measuring 1.8x1.5x0.9cm
 - Composition solid (2 pts)
 - Echogenicity hypoechoic (2pts)
 - Shape wider than tall (0 pts)
 - Margin ill-defined (0 pt)
 - Echogenic foci peripheral rim calcification (2 pts)
 - TR 4 (6 points) moderately suspicious
 - Consider FNA if \geq 1.5cm, monitor if \geq 1cm

Table 7. The Bethesda system for reporting thyroid cytopathology: Diagnostic categories and risk of malignancy¹

Diagnostic category	Estimated/predicted risk of malignancy by the Bethesda system (%) ¹	Actual risk of malignancy in nodules surgically excised (%, median (range)) ²
Nondiagnostic or Unsatisfactory	1-4	20 (9-32)
Benign	0-3	2.5 (1-10)
Arypia of Undetermined Significance or Follicular Lesion of Undetermined Significance (AUS/FLUS)	5-15	14 (6-48)
Follicular Neoplasm (FN/SFN)	15-30	25 (14-34)
Suspicious for Malignancy (SUSP)	60-75	70 (53-97)
Malignant	97-99	99 (94-100)

Haugen. Thyroid 2016

Molecular Diagnostics^{1,2}

	Afirma GSC	ThyGenX/Thyra MIR	ThyroSeq v3
Sensitivity	91.1%	89%	94.1%
Specificity	68.3%	85%	81.6%
Negative predictive value	96.1%	94%	97.3%
Positive predictive value	47.1%	74%	65.9%

1. Nikiforov YE, Baloch ZW. Cancer Cytopathol. 2019:27(4):225-230.

2. Nishino M, Nikiforov M. Arch Pathol Lab Med. 2018;142:446-457.

Monitoring

- TR5: 1, 2, 3, 4, 5 yr
- TR4: 1, 2, 3, 5 yr
- TR3: 1, 3, 5 yr
- Imaging can stop after 5yrs if no change.
- Consider biopsy/re-biopsy if it grows
 - > 50% increase in volume
 - > > 20% increase in at least two nodule dimensions with minimal increase of 2mm

Tessler FN et al. JACR 2017. dx.doi.org/10.1016/j.jacr.2017.01.046

Radiofrequency ablation (RFA)

 Minimally invasive thermal ablative treatment can reduce morbidity associated with thyroidectomy

- Benign nodule causing symptoms or cosmetic concern
- thyrotoxic nodule(s)
- Clinical value for thyroid cancers is currently being evaluated

Key Takeaways

- T3 has low value in diagnosis of hypothyroidism
- Evidence does not support <u>routine</u> use of LT3/LT4 combination therapy
- Methimazole is preferred antithyroid medication over PTU except in 1st trimester of pregnancy
- ACR TI-RADS may reduce unnecessary biopsies and referrals
- Molecular testing may reduce the need for surgical intervention thyroid nodules with indeterminant biopsy results

ACR = American College of Radiology; TI-RADS: Thyroid Imaging Reporting and Data System.

Q/A

cjcmedicine@gmail.com

