Ballistic Extremity Trauma

Tuesday Fisher, MD

Orthopedic Trauma Fellow

Atrium Health Carolinas Medical Center

Summary

- 1. Understand basic ballistics
- 2. Do a complete neurovascular exam
- 3. Low energy → closed (like)/ High energy → open (like)

Demographics

- 175, 459 Non-fatal firearm related injuries in 2020 ¹
- Most commonly assaults
- Injuries occur most often in males^{1,2}
- Significant cause of morbidity in children ³

Ballistic fractures²

- 1.Lower extremity 46%
- Diaphyseal femur fractures most common ballistic fracture ²
- 2. Upper extremity fractures 33%
- 3. Non-spine axial fractures 16%
- 4. spine fractures 5%
 - 1. CDC. WISQARS Fatal and non-fatal injury reports.https://www.cdc.gov/violenceprevention/firearms/fastfact.html
 - 2. Lyons, GJ. Epidemiologyof ballistic fractures in the United States: a 20-year analysis of the Firearm Injury Surveillance Study Injury. 2022.
 - 3. Perkins C., et al. Orthopedic firearm injuries in children in adolescents: an eight- experience at a major urban trauma center. Injury. 2015

Ballistics

Reformation by Temporary elastic tissue cavity **Direction of travel** Bullet Permanent Compression cavity

- Kinetic energy of projectile determines wounding *potential*
 - $KE = 1/2MV^2$
- Other Factors → efficiency of KE transfer
 - passage of missile in body
 - penetrating higher energy then perforating
 - Cavitation
 - secondary shock wave
 - Yaw-> tumbling
 - Caliber, construction of bullet (Mass, fragmentation)
 - Clothing

and crush

- 1. Di Maio VJM: Gunshot Wounds: Practical Aspects of Firearms, Ballistics, and Forensic Techniques. 1993.
- 2. Bartlett, C et al. Ballistics and Gunshot wounds: effects on musculoskeletal tissues. JAAOS. 2000.

Barrel speed High (> 2,000 ft./s)

- Rifles, some hand guns
- *Shotgun fire within 10ft.
- More significant soft tissue injury and contamination

Low (<2,000 ft./s)

- Most handguns
- Shotguns at further distances
- Lower infection risk

1. Ramasamy, McMenemy, Stinner, Clasper. Gunshot and Wartime Injuries. Rockwood and Green's Fractures in Adults, 9e.2019.

Evaluation

1. History

- 1. Type of firearm/projectile (low vs high energy)- not as important as injury itself
 - 1. Is wadding present (shotgun)

2. Physical exam

- 1. Assess soft tissue damage, contamination, exposed deep structures
- 2. Thorough motor/sensory exam if possible
- 3. Vascular exam –palpation, doppler, ABI if appropriate
- 4. Compartment exam -> open wound does not indicate compartment decompression

3. Imaging

- 1. Plain radiographs
- 2. Intra-articular extension of diaphyseal fractures and significant comminution is common
 - 1. Consider CT- only changes management 10% of the time but useful surgical planning tool
 - 2. CT angiogram if exam suggests injury

- 1. Ramasamy, McMenemy, Stinner, Clasper. Gunshot and Wartime Injuries. Rockwood and Green's Fractures in Adults, 9e.2019.
- 2. Bartlett, C et al. Ballistics and Gunshot wounds: effects on musculoskeletal tissues. JAAOS. 2000.

Early Management- High energy

- Dictated by soft tissue and osseous injury
 - Treated like an open fracture
 - Higher infection rate than closed injury
- Early antibiotics, debridement and stabilization
 - 1st generation cephalosporin continued for 1-3 days post injury^{1,2}
 - No aminoglycoside or PCN required

- 1. Hospenthal DR, et al. Guidelines for the prevention of infections associated with combat related injuries 2011 update. Jtrauma.2011.
- 2.Murray, CK. Et al. Prevention of infection associated with combat related extremity injuries. J Trauma. 2011.

Management- low energy

- 1. minimal/ no contamination, joint penetration, vascular injury, no unstable/ surgically indicated fracture, clinically stable patients can be managed conservatively
 - Bedside I&D
 - Discharge from ED
- recommend prophylaxis¹⁻³
 - Consider prophylaxis with PO 1st Gen cephalosporin²
- Allow wound to drain (do not close primarily)
 - Wound care
- Standard closed fracture care

- 1. Di Maio VJM: Gunshot Wounds: Practical Aspects of Firearms, Ballistics, and Forensic Techniques. 1993.
- 2. Bartlett, C et al. Ballistics and Gunshot wounds: effects on musculoskeletal tissues. JAAOS. 2000.
- 3. Sathiyakumar, V, et al. Gunshot induced fractures of the extremities: a review of antibiotic and debridement practices. Curr Res Msk Med. 2015.

Surgical indications

- Fracture would otherwise be surgically managed
- Intraarticular fragments
 - I&D of intraarticular wounds without retained fragments not recommend
 - Meniscal/chondral injuries still common
- Wound part of potential surgical site for other injuries
- Significant soft tissue wounds
- Routine debridement of low energy bullet wounds not indicated
 - 2% infection rate

- 1. Bartlett, C et al. Ballistics and Gunshot wounds: effects on musculoskeletal tissues. JAAOS. 2000.
- 2. Ramasamy, McMenemy, Stinner, Clasper. Gunshot and Wartime Injuries. Rockwood and Green's Fractures in Adults, 9e.2019.

Thank you!

