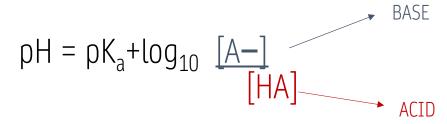


ABG'S AND VENTILATORS: LET'S TALK ABOUT GAS!

Andrew Walker, PSM, MS, PA-C Physician Assistant Instructor of Medicine Critical Care/Internal Medicine Mayo Clinic Arizona

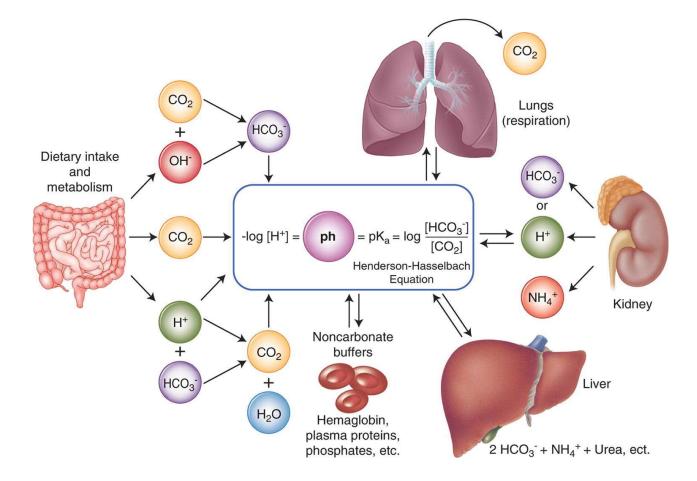
Amelia Lowell, RRT, RCP Assistant Professor of Anesthesiology Director of Respiratory Care Mayo Clinic Arizona

DISCLOSURES


None.

OBJECTIVES

By the end of this workshop, the learner should be able to:


- •Analyze ABGs to determine acid-base disorders, mixed disorders, and compensation.
- •Understand and manage basic high flow, CPAP, BiPAP, and Ventilator settings.
- •Apply ABGs to clinical scenarios and decision making.

HENDERSON-HASSELBALCH EQUATION

- •The ratio of base-acid must stay relatively constant for the pH to stay constant
 - •Because this is a logarithmic equation, it takes a fairly large change in acid or base to change the pH

ACID-BASE PHYSIOLOGY

COMPONENTS OF THE ABG

Component	Measure
рН	Acid-base balance
PaO ₂	Partial pressure of oxygen
PaCO ₂	State of alveolar ventilation
HCO ₃ -	Reflects metabolic component of blood
Alveolar-arterial (A-a) gradient	Gradient between alveolar and arterial oxygen
Base excess*	The amount of acid or base it would take to return the pH back to 7.4

INDICATIONS FOR ABG

- •Identify respiratory, metabolic, and mixed acid-base disorders
- •Monitoring acid-base status in disorders such as DKA
- •Quantification of oxyhemoglobin and oxygen carrying capacity of the patient
- •Quantification of levels of dyshemoglobins (methemoglobin, carboxyhemoglobin)

INDICATIONS FOR ABG

- •Measuring partial pressures of respiratory gases involved in ventilation and perfusion, e.g....
 - COPD exacerbation
 - Asthma exacerbation
 - Pulmonary embolism
 - Pulmonary fibrosis
 - Pneumothorax
 - In these cases, can measure severity and progression of disease/exacerbation
- •Assessment of response to mechanical ventilation

CLINICAL SCENARIOS WHERE ABG'S ARE USEFUL

- Respiratory distress
- •Hypoxia
- •Airway obstruction
- •Sepsis or shock
- •DKA
- •Renal failure
- •Drug overdose or intoxication

- •AMS or obtundation
- Monitoring response to invasive and non-invasive ventilation
- •Code blue

CONTRAINDICATIONS TO ABG

- Local infection
- Distorted anatomy
- •Abnormal Allen test
- •AV fistula
- •Severe PVD
- Relative contraindications:
 - Anticoagulation, tPA, severe coagulopathy
- Consider a-line if repeat ABGs will be necessary!

BEFORE YOU GET AN ABG

Ask yourself...

- 1. What am I looking for/expecting?
- 2. How will the results help guide or change my management?
- 3. Will comparison be helpful after treatment/intervention?

RESPIRATORY ACIDOSIS

"I can't catch my breath!"

- Rapid, shallow breaths OR bradypnea
- Dyspnea
- Headache
- Disorientation
- Dizziness
- Drowsiness


↓pH ↑pCO₂

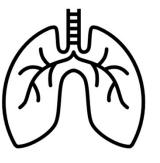
Retention of CO₂ by the lungs

- Hypoxia
- Hyperkalemia
- Dysrhythmias
- Hyperreflexia
- Muscle Weakness

METABOLIC ACIDOSIS

- Confusion
- Drowsiness
- Headache
- Nausea, Vomiting
- Diarrhea

↓pH ↓ HCO₃-


• Decreased BP

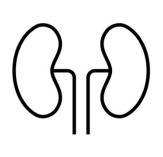
- Hyperkalemia
- Vasodilation
- Kussmaul respirations

Decreased ability of kidneys to excrete acid

RESPIRATORY ALKALOSIS

- Rapid, deep breathing
- Lethargy
- Confusion
- Nausea, vomiting
- Numbness and tingling

↑pH ↓pCO₂


• Light headedness

- Seizure
- Tachycardia
- Hyperventilation
- Hyperkalemia

Loss of CO₂ from the lungs

METABOLIC ALKALOSIS

- Restlessness \rightarrow lethargy
- Confusion
- Dizziness
- Irritability
- Nausea, vomiting
- Diarrhea

↑pH ↑HCO₃-

- Tremors
- Muscle cramping
- Tingling in fingers/toes
- Hypokalemia
- Tachycardia

A decrease in acid or an increase in base

ABG "NORMAL" VALUES

Component	Low Normal	Normal Range	Estimated Normal	High Normal
ρН	Acidosis	7.35 – 7.45	7.4	Alkalosis
PaO ₂	Hypoxemia	80 – 100 mmHg	100 – (0.3 x age)	Hyperoxia
PCO ₂	Respiratory alkalosis	35 – 45 mmHg	40 mmHg	Respiratory acidosis
HCO ₃	Metabolic acidosis	22 – 26 mEq/L	24 mEq/L	Metabolic alkalosis
A-a gradient		< 10 mmHg	< 10 mmHg	
Base excess		-3 to +3 mEq/L		

FUNDAMENTALS OF ABG INTERPRETATION

Assume your patient is acutely ill and may have more than one disorder!

- 1. Look at the pH to determine the primary disorder
- 2. Does the pCO_2 explain the first disorder?
- 3. Does the bicarb explain the disorder or is there a mixed disorder?

ABG PRACTICE: STEPS 1-2

- pH low (<7.4) = Acidosis, pH high (>7.4) = Alkalosis
- If pH and PCO2 move in opposite directions, respiratory disorder is primary
- If pH and PCO2 move in the same direction, metabolic disorder is primary

рН	PCO ₂	HCO ₃	Disorder
7.2	70	28	
рН	PCO ₂	HCO ₃	Disorder
рн 7.2	PCO ₂ 30	HCO ₃ 16	Disorder

ABG PRACTICE: STEPS 1-3A

ρН	PCO ₂	HCO ₃	Disorder
7.5	40	31	

ρH	PCO ₂	HCO ₃	Disorder
7.5	30	16	

DIVIDE UP!

ABG VS. VBG

- •Why get an ABG instead of a VBG?
- •Venous blood gases (VBG) are widely used in the emergency setting
 - •There is no data to confirm that this level of agreement is maintained in shock states or mixed acid-base disturbances
 - Quicker: performed by a phlebotomist with other labs
 - •Less painful

HOW ABG VALUES COMPARE TO VBG

ABG	VBG
рН	pH + 0.035 units
pCO ₂	pCO ₂ + 5.7 mmHg *correlation dissociates in hypercapnia and shock
HCO ₃	HCO ₃ – 1.41 mmol/L
Base excess (BE)	BE + 0.089 mmol/L
Lactate	Does NOT correlate > 2mM
pO ₂	Does NOT correlate (venous vs. arterial sample)

CLINICAL APPLICATIONS

- •What do acidosis and alkalosis look like?
- •What do they imply?
- •How dangerous are they?
- •What disturbances can they cause in the body?

CLINICAL CONSEQUENCES OF ACIDEMIA

Cardiovascular	 Impaired cardiac contractility Decreased CO Decreased systemic BP Increased PVR Decreased threshold for arrhythmia
Respiratory	Hyperventilation with possible muscle fatigue
Neurologic	Obtundation/coma
Metabolic	 Insulin resistance Loss of bone and muscle Protein degradation Abnormalities in the release of many hormones Hyperkalemia Inhibition of anaerobic glycolysis Reduction in ATP synthesis

CLINICAL CONSEQUENCES OF ALKALEMIA

Cardiovascular	 Reduced coronary blood flow Reduced threshold for angina Decreased threshold for arrhythmia
Respiratory	• Hypoventilation with hypercapnia and hypoxemia
Neurologic	SeizureTetanyLethargy/delirium/stupor
Metabolic	 Hypokalemia Hypomagnesemia Hypophosphatemia Stimulation of anaerobic glycolysis Decreased oxyhemoglobin dissociation

Acid-base Differentials

CAUSES OF RESPIRATORY ACIDOSIS

• \ Respiratory stimuli

- Drug overdose
- Anesthesia
- Intracranial issues (TBI, Stroke, SAH, etc.)
- Spinal or peripheral nerve issues (C-spine injury, myasthenia gravis, ALS, peripheral neuropathy, etc.)
- Pulmonary issues (ARDS, asthma, pneumonia, COPD, massive PE/Shock, atelectasis)
- Extrathoracic/abdominal distention (obesity, compartment syndrome)

CAUSES OF METABOLIC ACIDOSIS

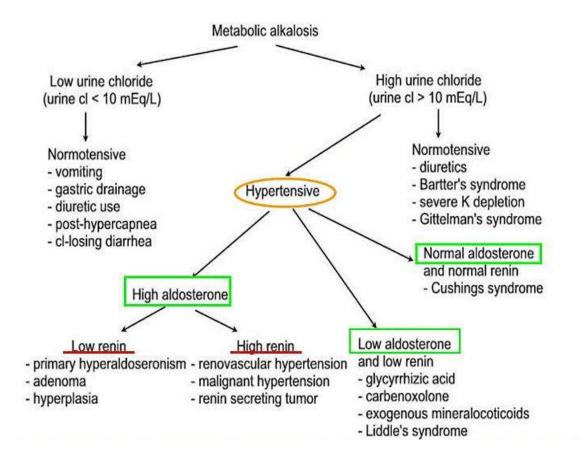
MUDPILES

- Methanol
- Uremia
- DKA
- Propylene glycol (Ativan, Dilantin)
- Isoniazid/Iron
- Lactate
- Ethanol/Ethylene glycol
- Salicylates / Seizures / Starvation

USED CRAP

- Ureteroenterostomy
- Small bowel fistula
- Excess chloride*
- Diarrhea
- Carbonic Anhydrase Inhibitors
- Renal Tubular Acidosis (RTA)
- Addison's disease / Acetazolamide
- Pancreatoenterostomy

FLUID CHEMISTRY


Fluid	Na	Cl	К	Mg	Са	HCO ₃	Glucose	Osm	рH
Plasma	140	104	4.5	1.25	2.5	24	0.8	290	7.4
0.9% NaCl	154	154						308	5.5
0.45% NaCl	77	77						154	
LR	130	109	4		1.5	28 as lactate		273	6.5
P-lyte	140	98	5	1.5			23 as gluconate	294	7.4
5% Dex							50	252	

CAUSES OF RESPIRATORY ALKALOSIS

- •Pain
- •Trauma
- •Sepsis
- •Pulmonary embolism
- Shock
- •Drugs

- Pregnancy
- •Hyperventilation (think sick first!)
- Mechanical ventilation

CAUSES OF METABOLIC ALKALOSIS

ABG ANALYSIS: THE BIG PICTURE

- 1. Look at the pH to determine primary disorder
- 2. Look at PCO2, use in conjunction with pH to determine primary disorder
 - If pH and PCO2 move in opposite directions, respiratory disorder is primary
 - If pH and PCO2 move in the same direction, metabolic disorder is primary

ABG ANALYSIS: THE BIG PICTURE

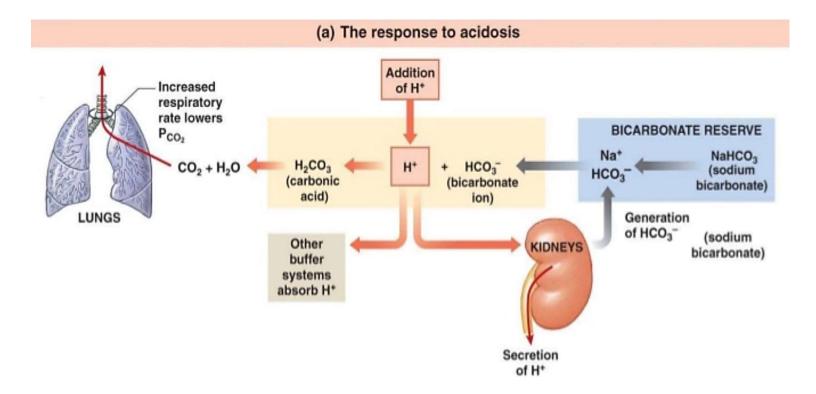
3. Look for mixed disorder

- If both pCO_2 and HCO_3 are $\uparrow \uparrow =$ respiratory acidosis OR metabolic alkalosis
- If both pCO_2 and HCO_3 are $\downarrow \downarrow =$ respiratory alkalosis OR metabolic acidosis
- If pCO_2 and HCO_3 move in opposite direction $\uparrow \downarrow$ = mixed disorder is present
- 4. Apply Compensation rules
 - Boston rule
 - Winter's formula
- 5. Consider calculating Corrected Anion Gap and Delta Gap
- 6. Clinical Application

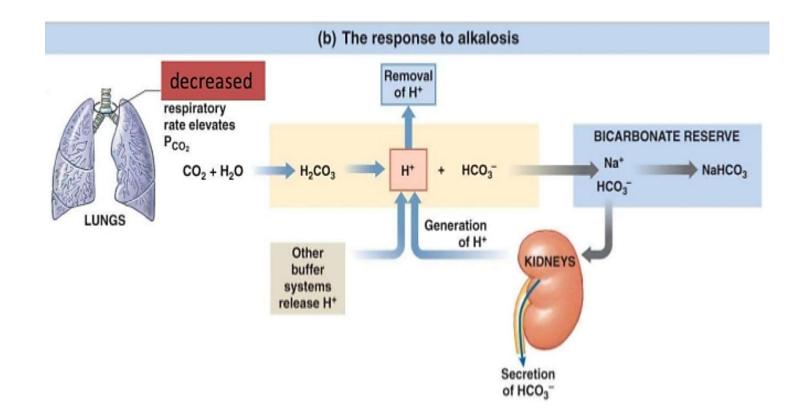
ABG PRACTICE: STEP 3

- If both pCO_2 and HCO_3 are $\uparrow \uparrow$ = respiratory acidosis OR metabolic alkalosis
- If both pCO_2 and HCO_3 are $\downarrow \downarrow =$ respiratory alkalosis OR metabolic acidosis
- If pCO₂ and HCO₃ move in opposite direction ↑ ↓ = mixed disorder is present

рH	PCO ₂	HCO ₃	Disorder
7.28	55	19	


ABG PRACTICE: STEP 3

ρH	PCO ₂	HCO ₃	Disorder
7.50	24	28	


COMPENSATION PHYSIOLOGY

- •**Respiratory system**: maintains pH by regulating CO₂
 - Can compensate quickly
- •Renal (metabolic) system: regulates pH by excreting H⁺ (acid) or reabsorbing HCO₃⁻ (base)
 - Several hours to days to compensate
- •With the body's ACUTE compensation, the pH will NOT return to normal, but it may get close

BUFFERING SYSTEMS/COMPENSATION

BUFFERING SYSTEMS/COMPENSATION

COMPENSATION

Acid-Base Disorder	Primary Change	Compensatory Change
Respiratory acidosis	PCO ₂ ↑	HCO ₃ ↑
Respiratory alkalosis	PCO ₂ ↓	HCO ₃ ↓
Metabolic acidosis	HCO ₃ ↓	PCO ₂ ↓
Metabolic alkalosis	HCO ₃ ↑	PCO ₂ ↑

ABG PRACTICE: STEP 4

ρH	PCO ₂	HCO ₃	Disorder
7.5	55	36	

CALCULATING FOR COMPENSATION

- •Respiratory Rule #1: pH changes INVERSELY by 0.08 for 10 mm CO2 in ACUTE cases
 - If CO2= 50, pH will be 7.32 (0.08 below)
 - If CO2=30, pH will be 7.48 (0.08 above)

•*DO NOT USE IN CHRONIC CASES...pH usually corrects/compensates to normal (7.4).

CALCULATING FOR COMPENSATION

Boston Rules (to predict changes in HCO_3^- from $PaCO_2$ – respiratory disorders):

Change in CO2	Change in HCO3	Condition	Example
10	1	Acute Resp Acidosis	If CO2=50,
			HCO3=25
10	2	Acute Resp Alkalosis	If CO2=30,
			HCO3=22
10	4	Chronic Resp Acidosis	If CO2=50,
			HCO3=28
10	5	Chronic Resp Alkalosis	If CO2=30,
			HCO3=19

CALCULATING FOR COMPENSATION

Winter's Formula (metabolic acidosis):
Expected pCO₂ = 1.5 x HCO₃ + 8 +/- 2

•Metabolic Alkalosis •Expected $pCO_2 = 0.7 \times [HCO_3^{-1}] + 20 (+/-5)$

A 26 YO M with asthma presents to the ED with difficulty breathing x 3 days. It is getting progressively worse. He has tried his regular and rescue inhalers; nothing seems to help. He looks pale and is taking rapid, shallow breaths. On exam, he has diffuse wheezing in all lung fields.

Vitals:

- HR 120
- BP 113/76
- RR 28
- SpO₂ 92%
- Temp 37.8C

ABG:

- pH 7.08
- pCO₂ 80 mmHg
- HCO₃⁻ 28 mEq/L

CMP:

- Na 138 mEq/L (135-145)
- K 4.0 mmol/L (3.6-5.2)
- Cl 106 mEq/L (96-106)
- Albumin 3.8 g/dL (3.5-5.5)
- Phos 3.0 mg/dL (2.8 4.5)

Respiratory rule #1

ABG results: • pH – 7.08

- pCO₂ 80 mmHg
- $HCO_{3}^{-} 28 \text{ mEq/L}$

pH changes INVERSELY by 0.08 for 10 mm CO2 in ACUTE cases

A 35 YO M presents to the ED with gun shot wound (GSW) to the abdomen. He was found down by a civilian about 20 minutes after the shooting who called 911. Upon arrival, he appears pale, diaphoretic, and is experiencing severe abdominal pain. He is slightly altered and cannot tell you where he is. He has no past medical history.

Vitals:

- HR 116
- BP 86/68
- RR 10
- SpO₂ 96%
- Temp 37.6C

ABG:

- pH 7.18
 pCO₂ 34 mmHg
- $HCO_{3}^{-} 12 \text{ mEq/L}$

CMP:

- Na 132 mEq/L (135-145)
- K 3.6 mmol/L (3.6-5.2)
- Cl 92 mEq/L (96-106)
- Albumin 3.2 g/dL (3.5-5.5)
- Phos 2.1 mg/dL (2.8 4.5)

ABG:
pH - 7.18
pCO₂ - 34 mmHg
HCO₃⁻ - 12 mEq/L

Winter's formula (metabolic acidosis) Expected PCO₂ in metabolic acidosis:

CASE 2 DDX

calcAG = 132 - [92+12] = 28

Respiratory Acidosis

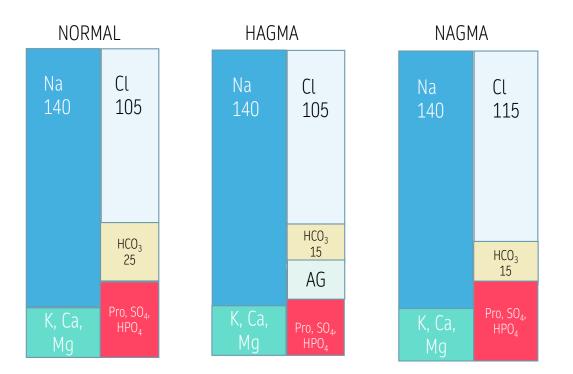
- *trespiratory stimulus*
- Atelectasis
- Additional injuries?

HAGMA

- MUDPILES:
 - Methanol
 - Uremia
 - DKA
 - Propylene glycol (Ativan, Dilantin)
 - Isoniazid/Iron
 - Lactate
 - Ethanol/Ethylene glycol
 - Salicylates/Seizures/Starvation

ANION GAP (CALCULATED)

 Anion Gap = the difference between measured cations (Na+, K+) and measured anions (Cland HCO₃⁻)


= Na - [Cl + HCO₃]

Normal range = 4 – 12 mmol/L

*We call this the calculated anion gap (cAG), because it is calculated from the BMP

- Significance?
 - The law of electrochemical neutrality
 - Provides foresight into managing acidosis

HIGH VS. NORMAL ANION GAP METABOLIC ACIDOSIS

HIGH ANION GAP METABOLIC ACIDOSIS (HAGMA)

- •Accumulation of or impairment of excretion of acids
- MUDPILES:
 - Methanol
 - Uremia
 - DKA
 - Propylene glycol (Ativan, Dilantin)
 - Isoniazid/Iron
 - Lactate
 - Ethanol/Ethylene glycol
 - Salicylates/Seizures/Starvation

NORMAL ANION GAP METABOLIC ACIDOSIS (NAGMA)

- •Mainly from losses of bicarb (HCO₃-)
- •USEDCRAP (earlier slide) OR
- •ABCDE
 - •Addison's
 - Bicarbonate loss (GI or renal think v/d, fistula, ostomy)
 - •Chloride excess*
 - Diuretics (acetazolamide)*
 - Extra Renal tubular acidosis (RTA)*

CORRECTED ANION GAP (OPTIONAL)

- Corrected Anion Gap (corrAG) = takes into account the unmeasured anions (albumin, sulfate, phos), which may change with acute or chronic illness
 - = [2 x Albumin] + [0.5 Phosphate] (+/- 2) OR [3 x Albumin] Normal range = 8 – 12 mmol/L
- Significance?
 - If calcAG > corrAG, there is <u>high gap metabolic acidosis</u> present

DELTA GAP (OPTIONAL)

- •*Check in the presence of HAGMA to determine if pure HAGMA or additional disorder present*
- •Delta Gap = $[calcAG corrAG] + HCO_3$
 - Net sum = 24
 - HAGMA only
 - Net sum < 24
 - NAGMA (non-anion gap acidosis) is present
 - Net sum > 24
 - METABOLIC ALKALOSIS is also present

PRACTICE: MINDING THE GAPS

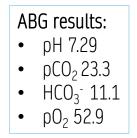
7.18
34 mmHg
12 mEq/L

<u>BMP:</u> Na= 138, K=3.8, Cl=115 Albumin=2.3, Phos=1

calcAG = 138 - [115+12] = 11corrAG = $2 \times 2.3 + [0.5 \times 1] = 5.1 (+/-2)$ calcAG > corrAG \rightarrow HAGMA present Delta Gap = [calcAG- corrAG] + HCO₃ = 6 + 12 = 1818 < 24...therefore, NAGMA present also

A 64 YO M with ESRD s/p kidney transplant, type 2 DM, and chronic HFrEF presents to the ED with 3 days of fatigue, abdominal pain, and shortness of breath. He is unsure, but he may have had a fever. On exam, he appears unwell and has crackles in the L lung base. He missed dialysis today. CXR shows a L basilar infiltrate.

Vitals:


- HR 100
- BP 92/78
- RR 20
- SpO₂ 84%
- Temp 38.0

ABG:

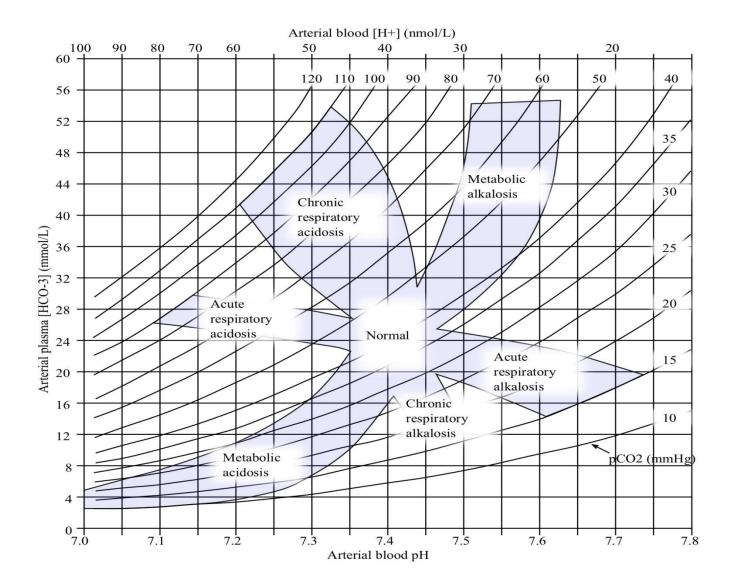
- pH 7.29
- pCO₂ 23.3
- HCO₃- 11.1
- pO₂ 52.9

labs:

- Na 136
- K 5.2
- Cl 106
 AG 18
- Glucose 260
- Albumin 2.8
- Phos 3.0
- BUN 89.1
- Cr 4.3
- Lactate 1.3
- Beta-hydroxybutyrate 2.7

Winters formula Expected $pCO_2 = 1.5 \times 11 + 8 = 24.5 (+/-2)$ Actual $pCO_2 = 23.3$

CASE 3 DDX

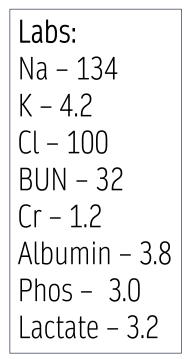

calcAG = 136 - [106+11] = 19

labs:

- Na 136
- K 5.2
- Cl 106
- AG 18
- Glucose 260
- Albumin 2.8
- Phos 3.0
- BUN 89.1
- Cr 4.3
- Lactate 1.3
- Beta-hydroxybutyrate 2.7

CASE 3 MANAGEMENT

- •How are we going to correct this patient's HAGMA and NAGMA ?
- 1. Treat DKA
- 2. Dialysis...add bicarb
- 3. Treat underlying cause of DKA...what's going on with this patient?
- •Are you going to get another ABG? If so, when?



A 68 YO F presents to the ED with 3 days of progressively worsening cough and shortness of breath. She has been experiencing intermittent fevers. Her appetite is diminished, and she is fatigued. On exam, she has scattered crackles. CXR reveals multifocal pneumonia.

Vitals: HR 96 BP 112/82 RR 26 SpO₂ 84% Temp 37.9 C

ABG:

- pH 7.55
- pCO₂ 22 mmHg
- HCO₃⁻ 16 mEq/L

ABG Results:

- pCO₂ 22 mmHg
- HCO_3^- 16 mEq/L

Compensation rules...Boston Approach for Resp Disorders

CASE 4

Change in CO2	Change in HCO3	Condition	Example
10	1	Acute Resp Acidosis	If CO2=50,
			HCO3=25
10	2	Acute Resp Alkalosis	If CO2=30,
	2		HCO3=22
10	4	Chronic Resp Acidosis	If CO2=50,
			HCO3=28
10	5	Chronic Resp Alkalosis	If CO2=30,
			HCO3=19

CASE 4 DDX

•Hypoxia 2/2 pneumonia leads to hyperventilation reducing systemic $CO_2 \rightarrow$

calcAG = 134- [100+16] = 18

- pH 7.55
- pCO₂ 22 mmHg
- HCO_{3}^{-} 16 mEq/L

CASE 4 MANAGEMENT

- •What is an appropriate management strategy to correct respiratory alkalosis?
- •How are we going to correct the metabolic acidosis?
- •How did the ABG help us here?
- •Would you get a repeat ABG? If so, when?

IN SUMMARY...

- Look at the pH first then CO_2 and HCO_3
 - Is there a mixed disorder?
- Use all components/calculations of the ABG and labs
 - Challenge yourself with the calculations...it may change your management!
- Apply clinically to your patient; don't just treat the numbers
 - Use your differentials...MUDPILES, USEDCRAP, etc.
- Consider what will happen if you start treatment
 - Will treating help or hurt?

REFERENCES

- Brandis K. Acid Base Book. <u>https://www.anaesthesiamcq.com/AcidBaseBook/</u>. Accessed August 1, 2021.
- Simple and mixed acid-base disorders. UpToDate.com. <u>https://www.uptodate.com/contents/simple-and-mixed-acid-base-disorders?search=simple%20and%20mixed%20acid%20base%20disorders&source=search_result&setedTitle=1~150&usage_type=default&display_rank=1.
 Updated September 9, 2020. Accessed August 1, 2021.
 </u>
- Story DA. Stewart Acid-Base: A Simplified Bedside Approach. Anesthesia & Analgesia. 2016;123(2):511-515. doi: 10.1213/ANE.000000000001261
- VBG versus ABG. litfl.com. https://litfl.com/vbg-versus-abg/. Published Nov 3, 2020. Accessed August 1, 2021.
- Reddi AS. Acid-Base Disorders: Clinical Evaluation and Management. Cham, Switzerland: Springer Nature Switzerland AG; 2020. <u>https://link-springer-com.proxy2.cl.msu.edu/book/10.1007%2F978-3-030-28895-2#toc</u>. Accessed August 1, 2021.