HOCUS POCUS: Introduction to Point of Care Ultrasound

Adrijana Anderson, PA-C

Mayo Clinic Arizona

Disclosures

No relevant relationships with ineligible companies to disclose within the past 24 months

Objectives

- Explain the indications for the use of bedside, point-of-care ultrasound (POCUS).
- Describe the basics of ultrasound technology, and "knobology".
- Be able to perform basic cardiac, lung, and eFAST ultrasound exams.

Point-Of-Care Ultrasound (POCUS)

Why should I learn ultrasound?

- It will make you a **better clinician**
- It will improve your procedural skills
- You can be reimbursed for this!

Basics of Ultrasound

Principle of Ultrasound:

sound waves are emitted from the probe and reflect on objects depending on impedance.

- Returned <u>hyper</u>echoic signals appear white
- Anechoic appears black (eg. fluid)
- Frequency

 resolution

Basic "Knobology"

Transducers

Linear
(high frequency)
"Vascular"

Phased Array (low frequency) "Cardiac"

Curvilinear (low frequency) "Abdominal"

Indicator!

There are a variety of scanning modes used in point of care ultrasound. Here we will discuss **B-** or **brightness mode**, **M-mode** or **motion mode** and **D-** or **doppler mode**.

B-mode (also called **2D mode**) converts echo waveforms into a **256 shade** grayscale image. The shade of gray depends on the amplitude of the returning echo.

M-mode plots the motion of a structure of interest. The probe's image plane is plotted on a vertical axis and time is plotted on a horizontal axis.

Doppler mode can determine movement of reflected ultrasound waves toward or away from the probe. This can be represented by colour changes or graphical peaks.

Doppler flow- "BART" -Blue Away, Red Towards

BLUE REPRESENTS
MOTION AWAY FROM
TRANSDUCER

RED REPRESENTS
MOTION **TOWARDS**TRANSDUCER

COLOUR DOPPLER

SPECTRAL DOPPLER

Advantages of POCUS

- Repeatable as clinical status changes
- Portable
- Non-invasive
- Non-ionizing radiation
- Low cost
- Easy to learn

Disadvantages of POCUS

- Air/Gas
- Body Habitus
- Experience / operator dependent
 - This is **NOT** a formal echo or ultrasound evaluation

Indications for POCUS

- Hypotension
- Trauma
- Respiratory Distress
- Assessment of fluid status

Indications for Ultrasound

- Foreign body
- Cardiac Arrest
- Appendicitis
- Fractures
- Retinal Detach
- DVT
- Tamponade
- Gallstones
- Hemoperitoneum
- Testicular torsion
- Hemothorax
- Abscess
- Urinary retention
- Ovarian cyst
- Tendon rupture
- . AAA
- Arthrocentesis
- Ectopic Pregnancy
- Any type of shock
- Sepsis

- Pneumothorax
- . CHF
- Optic nerve
- Vascular access
- Paracentesis
- Pyloric stenosis
- Nerve blocks
- Resuscitation
- Intubation
- Epididymitis
- Hydronephrosis
- Baker's Cyst
- , IUP
- Bowel Obstruction
- Hernia
- Ascites
- Cellulitis
- Joint effusion
- Thyroid

Our Focus

- Cardiac Ultrasound
 - IVC/Fluid Assessment
- FAST (Focused Assessment Sonography in Trauma)
- Lung
- "Miscellaneous" (vascular, eye, etc.)

Sonographic Assessment of Medical Emergencies

- 1. Use a structured approach
- 2. Limited and focused exam
- 3. Repeat as necessary!

Case #1

- 38 yo male was involved in a car accident.
- No seatbelt.
- Had a pulse in the ambulance, now has no pulse.

Case #1

Case #1

Cardiac Ultrasound

Goals of Cardiac Ultrasound

- Is the heart strong or weak?
 - LV and RV size/systolic function
- Is there fluid around the heart?
 - Pericardial effusion/cardiac tamponade
- What is the fluid status of the patient?

Four Views of the Heart

- Subxiphoid/subcostal
- Parasternal Long
- Parasternal Short
- Apical (Four Chamber)

Subxiphoid View

Subxiphoid View

Parasternal Long View

Parasternal Long View

Parasternal Short View

Parasternal Short View

Apical (Four Chamber) View

Apical (Four Chamber) View

Evaluation of the IVC

Static Parameter for estimating $P_{RA} \approx CVP \approx$ fluid status of patient

IVC Diameter (cm)	Collapse	RA Pressure (mmHg)	CVP	Fluid Status
<2	>50%	<10	0-10	"Dry"
>2	<50%	>10	10-20	"Full"

The "M Mode" can be used to measure IVC as well

Anything that increases the RA pressure can dilate the IVC > LV failure, RV failure, Pulmonary HTN, TR, Hypervolemia

Evaluation of the IVC

Sensitivity: 63% Specificity: 73%

"A small IVC is moderately predictive of fluid responsiveness, however a dilated IVC cannot rule out fluid responsiveness."

- 82 year old male presents to the ED with weakness
- <u>BP:</u> 84/70 <u>HR:</u> 104 <u>RR:</u> 24 <u>Temp:</u> 36.2 °C
- O2 sats 78% on RA, 91% on High Flow Oxygen.

Patient's BP: 86/68

After the ultrasound, patient was given a fluid bolus.

■ After 500cc of fluid:

■ <u>BP:</u> 100/70 <u>HR</u>: 98 <u>RR</u>:20 <u>Temp</u>: 38.2°C

■ Pneumonia treatment was initiated.

Focused Assessment Sonography in Trauma (FAST)

- Quick and can be repeated
- Look for free intraperitoneal fluid

A negative FAST exam does **NOT** rule out throacoabdominal injury, free fluid or a pneumothorax!! It is just used for **screening**!!

FAST

- Image Acquisition
 - Low frequency probe, usually the curvilinear probe.
 - Four views:
 - Pericardial
 - Hepatorenal
 - Splenorenal
 - Rectovesicular

FAST – Pericardial

FAST – Hepatorenal

Morison's pouch

FAST – Splenorenal

FAST – Rectovesicular

Lung Ultrasound

- Can assess for:
 - Pulmonary edema
 - Consolidation/pneumonia
 - Pleural effusions
 - Pneumothorax

	CXR (sensitivity)	US (sensitivity)
Pulmonary edema	56.9%	85-92%
Pneumonia	38-64%	85-96%
Pneumothorax	39-50%	78-90%

In a study, lung ultrasound provided the correct diagnosis in **90.5% cases of acute respiratory failure.

BLUE Protocol

BLUE (Bedside Lung Ultrasound in Emergency) Protocol Exam Points:

- 1. 2nd intercostal space, mid-clavicular line
- 2. 5th IC space, anterior axillary line

- 3. Level of diaphragm, axillary line
- 4. Level of diaphragm, posterior axillary line

PARTIALLY AERATED B-lines

COMPLETELY DE-AERATED Consolidation

DETERIORATION

IMPROVEMENT

MODERATE SEVERE CRITICAL

Lung aeration

100%

Lung sliding

Irregular pleura

B-lines increasing in number and distribution (multifocal, discrete) Coalescent B-lines

Small pleural consolidations

Involvement of upper and anterior areas Consolidation (non-translobar and translobar)

Air bronchograms

Pleural effusion (rare)

Lung Ultrasound

Pleural Effusion

Lung Ultrasound

"B Lines" = Pulmonary Edema

Pneumothorax

- Midclavicular, longitudinal
- Find the pleura between two ribs
 - Lung sliding = normal (rules out pneumothorax)
 - No sliding = Pneumo
 - "Seashore" = Normal
 - Barcode = Pneumo

Ultrasound is actually more sensitive than CXR for finding a pneumothorax!

Normal Lung Sliding

Which side demonstrates a pneumothorax?

22yo female with history of asthma, collapsed in her front yard.

- Her neighbor witnessed the event and called 911, saying "I think she must've had an asthma attack, she's turning blue!"
- Tachycardic, hypotensive, and cyanotic in field.
- Intubated. Has a weak, fast pulse.

Does she have a pneumothorax?? Pulmonary edema?

Is it her heart??

Why is she hypotensive??

- Hepatorenal view
- Free fluid in Morison's Pouch
- Ruptured ectopic pregnancy

Reminder!

If you have a patient with unexplained **hypotension**, consider:

- 1. Is it the pump??
- 2. Is is the pipes?? (hypovolemia, bleeding)

How can I use this in the office?

Should I do an I&D or apply heat and give antibiotics?

Cellulitis vs. Abscess?

Cellulitis

Abscess

42 yo female with nausea and RUQ pain

Central Line Placement

Why implement POCUS?

POCUS was felt to have the potential to reduce or prevent M&M in 45% of cases in which it was not used.

Cardiac and lung POCUS were among the most useful applications, especially in patients with cardiopulmonary complaints and in those with abnormal vital signs.

POCUS in Cardiorespiratory Arrest (POCUS-CA)

In the hands of a trained clinician, allows for:

- Evaluation of the quality of compressions
- Rapid diagnosis of reversible causes of arrest with non-defibrillable rhythms (eg. Hypovolemia, PE, Tamponade, Pneumothorax, etc).
- Monitoring of response to treatment
- Prognostic information regarding the possibility of ROSC and survival

Point of Care Ultrasound improves clinical outcomes in patients with acute onset dyspnea

A systematic review and meta-analysis including 8 randomized controlled trials and 6 observational studies (5393 patients)

How am I going to learn to ultrasound?!?

Keep it simple!

Typical Learning Curve

Step #1: Snow storm

Typical Learning Curve

Step #2:
"I see gallstones!!"

Typical Learning Curve

<u>Step #3:</u>

"This is exciting!
What else can I do
with this?!"

Lessons for Practice

- PRACTICE ultrasound as much as possible!
- Don't interpret something you are not sure of.
- The more you scan, the better you will get! ③

Questions??

Anderson.Adrijana@mayo.edu

References

- Jensen MB, Sloth E, Larsen KM, Schmidt MB. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. *Eur J Anesthesiology*. 2004;21:7007.
- Lamia B, Ochagavia A, Monnet X, et al. Echocardiographic predicition of volume responsiveness in critically ill patients with spontaneously breathing activity. *Intensive Care Med.* 2007:33:1125-32.
- Critical Care Ultrasound Course Handout, SCCM Adult Ultrasound Course, 2014.
- Lichtenstein DA, Mezière GA. Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure. Chest. 2008;134(1):117-125. doi:10.1378/chest.07-2800.
- Alrajab S, Yousef AM, Akkus N, Caldito G. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of theliterature and meta-analysis. Critical Care 2013, 17:R208.
- Long E, Oakly E, Duke T, Babl FE. Does Respiratory Variation in Inferior Vena Cava Diameter Predict Fluid Responssiveness: A Systemic Review and Meta-Analysis. SHOCK 2017; 47(5):550-559.
- With special thanks to Dr. Joseph Wood, Hannelisa Callisen, PA-C and Andrew Walker, MMS, PA-C.