Nephrology for the Hospitalist

Brett Gage PA-C
Section of Nephrology
West Virginia University Department of Medicine

Disclosures

• None

Objective

- Management of Hyperkalemia
- Acute Kidney Injury Evaluation
- Approaching Acid Base Disturbances
- Indications for Dialysis
- Evaluation of Hyponatremia

- 71 year old female presents to the ER via EMS for altered mental status. The previous 3 days she has had nausea, vomiting, diarrhea.
- PMH: HTN, HLD, DM type 2
- Medications
 - ASA 81mg
 - Lisinopril 40mg
 - Metformin 1,000mg BID
 - Atorvastatin 80mg

Vitals:

Temp: 99.3 F

BP: 100/55

HR: 127

RR: 33

SpO₂: 98% on 2L NC

- Na 138 mmol/L
- K 8.7 mmol/L
- Cl 100 mmol/L
- CO₂ 8 mmol/L
- AG 30 mmol/L
- BUN 65 mg/dL
- Cr 7.9 mg/dL (previously 1.2)
- GFR 9 cc/min (previously GFR 68cc/min)
- Albumin 2.5g/dL

- VBG
 - pH 7.05
 - pCO₂ 30 mmHg
 - Bicarbonate 7 mmol/L
 - Lactate 15 mmol/L

Hyperkalemia

- Ensure it is a true hyperkalemia
- Look for
 - Hemolysis
 - Leukocytosis (>100,000)
 - Thrombocytosis (1,000,000)¹

EKG changes present in 65% of K > 6.5²

Figure 1: Progressive changes in ECG with increasing severity of hyperkalaemia.

Figure 2: K 9.1 mmol/l

- Peaked T waves
- Diminished P waves
- Wide QRS complexes¹

Hyperkalemia: Temporizing Measures

IV Calcium

- Gluconate or Chloride
- Repeat every 30-60 minutes
- Antagonizes the cardiac membrane excitability

Cell shifting

- Insulin/Dextrose
- Albuterol
- Bicarbonate^{1,2}
- These therapies buy time to remove potassium

Clin J Am Soc Nephrol 10: 1050–1060, 2015

Potassium Removal

- Loop Diuretics
- Potassium Binders
 - Patiromer (Veltassa)
 - Sodium Zirconium Cyclosilicate (Lokelma)
 - Sodium Polystyrene Sulfonate (Kayexalate)
- Dialysis³

Acute Kidney Injury

KDIGO

- ^creatinine by 0.3 mg/dL within 48 hours OR
- ^creatinine to 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days OR
- Urine volume <0.5 ml/kg/h for 6 hours.

Timing Diagram of the Detection of Acute Kidney Injury

Figure 71-1: Timing diagram of the detection of acute kidney injury (AKI). *GFR*, Glomerular filtration rate.

(Adapted from reference 15 ②.)

Causes of AKI

Nephrotic syndrome

- Proteinuria > 3.5g/day
- Hypoalbuminemia <3.5g/dL
- Edema
- Hypercholesterolemia
- Lipiduria

Nephritic syndrome

- Oliguria
- Hematuria
- Proteinuria (classically <3g/day)
- Edema
- Hypertension
- Abrupt onset

Rapidly progressive glomerulonephritis (RPGN)

- Renal failure over days to weeks
- Hematuria
- Proteinuria
- May have other systemic signs/symptom

Nephrotic

- Minimal change disease
- Focal segmental glomerulosclerosis
- Membranous nephropathy
- Amyloidosis/Myeloma
- Diabetic nephropathy
- Membranoproliferative GN

Nephritic

- ANCA vasculitis
- Anti-GBM
- Post infectious GN
- Lupus nephritis
- IgA nephropathy
- Membranoproliferative GN
- Thrombotic microangiopathy (TTP/HUS/ Compliment mediated)

Urinary Evaluation

- Sodium
- Urea
- Creatinine
- Osmolality
- Urinalysis
 - Macroscopic (dipstick)
 - Microscopic
- Protein to Creatinine ratio

• FeNa =
$$\frac{(U_{Na}/P_{Na})}{(U_{Cr}/P_{Cr})}$$
 x100

- FeNa will be impacted by the use of diuretics or in CKD
- <1% pre-renal
- >2% intrinsic or ATN

• FeUrea=
$$\frac{(U_{Ur}/P_{Ur})}{(U_{Cr}/P_{Cr})}$$
 x 100

- Is not impacted by diuretic use
- <35% pre-renal</p>
- >50% intrinsic or ATN

How well does the fractional excretion of sodium (FENa) distinguish intrinsic from prerenal AKI?

Methods

Systematic review of studies utilizing FENa until December 31, 2021

Only studies of intrinsic vs prerenal AKI evaluated

Meta-analysis performed

Findings

		Pooled sensitivity FENa cutoff 1%	Pooled specificity FENa cutoff 1%
Overall 15 studies 872 patients		90% (95% CI: 81-95%)	82% (95% CI: 70-90%)
Subgroups	Studies with CKD/diuretics 6 studies 511 patients	83% (95% CI: 64-93%)	66% (95% CI: 51-78%)
	Diuretics 5 studies 238 patients	80% (95% CI: 69-87%)	54% (95% CI: 31-75%)
	Oliguric w/o CKD/diuretics 8 studies 264 patients	95% (95% CI: 82-99%)	91% (95% CI: 83-95%)

Conclusions: Fractional excretion of sodium (FENa) has a limited role for AKI differentiation in patients with a history of CKD or diuretic therapy. It is most valuable when oliguria is present.

Mohammad Abdelhafez, Tarek Nayfeh, Anwar Atieh, et al. *Diagnostic Performance of Fractional Excretion of Sodium for the Differential Diagnosis of Acute Kidney Injury*. CJASN doi: 10.2215/CJN.14561121. Visual Abstract by Gerren Hobby, MD

Interpretation of Urine Studies in AKI

- Low urine sodium <20mmol/L
 - Decreased renal perfusion → Increased sodium reabsorption
 - Volume overload or depleted
- High urine sodium >20mmol/L
 - Diuretics
 - Acute Tubular Necrosis (ATN)
- Urine osmolality
 - Variable 50-1,200 mOsm/kg
 - Vasopressin activity → Increased water reabsorption → Higher urine osmolality

Urinary Sediment in AKI

URINALYSIS MACROSCOPIC WIT	
APPEARANCE	Clear
COLOR	Normal (Yell
SPECIFIC GRAVITY, URINE	>1.030 ^
GLUCOSE	Negative
BILIRUBIN	Negative
KETONES	Negative
BLOOD	Negative
PH URINE	6.0
PROTEIN	30 !
UROBILINOGEN	Negative
NITRITE	Negative
LEUKOCYTES	Negative
URINALYSIS, MICROSCOPIC	
RBC'S	1.0
WBC'S	3.0
BACTERIA	Occasional o

High specific gravity = concentrated urine = more vasopressin activity

- Urine Osmolality 552
- Urine Sodium <20
- FeNa = 0.2%
- FeUrea = 14%
- Protein/Creatinine ratio: 300mg/g
- Bland urine
- CT A/P without obstruction
- This patient is looking more Pre-Renal AKI

pH- Normal 7.35-7.45
 pH 7.0 is low so it is acidotic

- 1. pH- Normal 7.35-7.45➤pH 7.0 is low so it is acidotic
- 2. What is the primary disturbance?

Primary Disturbance

A/B Disturbance	pH 7.35-7.45 7.0	pCO ₂ 35-45mmHg 30	HCO ₃ - 22-26mEq/L 8
Metabolic Acidosis	\	↓	\
Metabolic Alkalosis	↑	↑	↑
Respiratory Acidosis (HCO ₃ - acute/chronic)	↓	^	Normal/↑
Respiratory Alkalosis Always acute	↑	\	Normal

- pH- Normal 7.35-7.45
 ▶pH 7.0 is low so it is acidotic
- 2. What is the primary disturbance?➤ Metabolic Acidosis
- 3. What is the AG? Na (Cl+ Bicarb)➤ High at 30

Approach to Patients With High Anion

Gap Metabolic Acidosis: Core Curriculum

2021 AJKD Vol 78 | Iss 4 | October 2021

- 1. pH- Normal 7.35-7.45
 - >pH 7.0 is low so it is acidotic
- 2. What is the primary disturbance?
 - ➤ Metabolic Acidosis
- 3. What is the AG? Na (Cl+ Bicarbonate)
 - ➤ High at 30
 - **≻What is the albumin? 2.5**
 - **➤** Correcting for the albumin
 - **≻**AG Corrected = AG uncorrected + (2.5(4.5 Albumin))
 - \triangleright AG Corrected = 30 + (2.5(4.5-2.5)) = 35

- pH- Normal 7.35-7.45
 ▶pH 7.0 is low so it is acidotic
- 2. What is the primary disturbance?➤ Metabolic Acidosis
- 3. What is the AG? Na (Cl+ Bicarbonate)➤ High at 35
- 4. Is there respiratory compensation?

Compensation

Acute Respiratory $\uparrow 10 \text{ pCO}_2$ $\uparrow 1 \text{ HCO}_3^-$

Alkalosis $\downarrow 10 \, \mathrm{pCO}_2$ $\downarrow 2 \, \mathrm{HCO}_3^-$

Acidosis

Chronic Respiratory

Acidosis	$\uparrow 10 pCO_2$	\uparrow 3 HCO ₃
Alkalosis	10 pCO₂	↓4 HCO ₃ -

Metabolic

Acidosis Winters formula: Expected $pCO_2 = 1.5(HCO_3^-) + 8 (+/-2)$

Expected $pCO_2 = 1.5(8) + 8 = 20 + / - 2$

- pH- Normal 7.35-7.45
 ▶pH 7.0 is low so it is acidotic
- 2. What is the primary disturbance?
 - ➤ Metabolic Acidosis
- 3. What is the AG? Na (Cl+ Bicarbonate)
 - ➤ High at 30
- 4. Is there compensation?
 - \triangleright Expected pCO₂ 20 +/- 2
 - >Actual pCO₂ 30
 - **≻No**

- pH- Normal 7.35-7.45
 ▶pH 7.0 is low so it is acidotic
- 2. What is the primary disturbance?
 - ➤ Metabolic Acidosis
- 3. What is the AG? Na (Cl+ Bicarbonate)
 - ➤ High at 30
- 4. Is there compensation?
 - \triangleright Expected pCO₂ 20 +/- 2
 - >Actual pCO₂ 30
 - **≻**No
- 5. Primary HAGMA with Respiratory Acidosis

Table 1. GOLDMARK Mnemonic for the High Anion Gap Metabolic Acidoses

Letter	Parameter	Potential causes
G	Glycols	Ingestion/infusion of ethylene, propylene, or diethylene glycol; metabolism generates glyoxylic, oxalic, D and L lactic acid.
0	5-Oxoproline	Chronic acetaminophen use can generate 5-oxoproline (a strong acid that is also called pyroglutamic acid).
L	L-Lactic acidosis	Multiple etiologies of types A and type B lactic acidosis.
D	D-Lactic acidosis	Carbohydrate loading in patients with short gut syndromes.
M	Methanol	Metabolism generates formic acid.
A	Aspirin	Toxic levels generate multiple organic acids including keto acids.
R	Renal failure	Accumulation of multiple inorganic and organic acids including sulfuric and phosphoric acid.
K	Ketoacidosis	B-OH butyric and acetoacetic acid.

Based on mnemonic proposed in Mehta et al, Lancet. 2008;372(9642):892.

Approach to Patients With High Anion Gap Metabolic Acidosis: Core Curriculum 2021 AJKD Vol 78 | Iss 4 | October 2021

Our Differentials

- L-Lactate
- Renal failure
- Ketoacidosis

Table 3. Causes of lactic acidosis		
Type A	Туре В	
Decreased oxygen delivery	Impaired oxygen utilization or defective lactate metabolism	
Systemic hypoperfusion Shock Sepsis	Underlying disease Liver failure Kidney failure Malignancy Sepsis Pheochromocytoma Thiamine deficiency Diabetic ketoacidosis Alkalosis	
Local hypoperfusion Thrombus/emboli Volvulus/torsion Compartment syndrome Sepsis	Drugs/toxins Acetaminophen Salicylate Metformin Catecholamines HARRT (first generation) Linezolid Propofol Cocaine	
Profound hypoxia ARDS, COPD, asthma Carbon monoxide Methemoglobinemia	Congenital metabolic defects	

HAART, highly active antiretroviral therapy; ARDS, acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease.

Acid-Base Disorders in the Critically III Patient

Anand Achanti and Harold M. Szerlip CJASN 18: 102–112, January, 2023

Dialysis Indications

Acidosis

Electrolytes

≻Hyperkalemia

Ingestions

➤ Methanol, Ethylene glycol, Metformin, ASA, Lithium

Oliguria

Uremia

Constellation of symptoms caused by the build up of uremic toxins

Dialysis Indications for This Patient

- Hyperkalemia
- Oliguria
- Acidosis
 - Metformin toxicity
 - AKI
 - Ketosis from poor PO intake
 - Diarrhea
 - Elevated Lactate

88 year old male presents to the ER after a syncopal episode. He has felt dizzy and weak for the last 4 days prior to his syncope. He also complains of right hip pain. PMHx include smoking 1ppd for 60 years, COPD and HTN

- Medications:
 - HCTZ 25mg
 - Albuterol PRN

- Vitals:
 - Temp: 97.3 F
 - BP: 140/75
 - HR: 127
 - RR: 33
 - SpO₂: 98% on RA
- PE:
 - Euvolemic
 - R hip TTP/movement

SODIUM	114 ¥
POTASSIUM	4.7
CHLORIDE	80 🕶
CARBON DIOXIDE	22 🕶
BUN	13
CREATININE	0.85
GLUCOSE	124
ANION GAP	12
BUN/CREAT RATIO	15
ESTIMATED GLOMERULAR FILTR	69 🖹
CALCIUM	9.9

- Pelvic XR shows a right intertrochanteric fracture
- Orthopedics recommends ICU admission

Hyponatremia-Is it True?

- True Hyponatremia has a serum osmolality <280mOsm
- Normal serum osmolality ~280mOsm (Pseudohyponatremia)
 - Hypertriglyceridemia
 - Hyperglobulinemia
- Elevated serum osmolality >290mOsm
 - Hyperglycemia
 - Mannitol
 - IVIG
 - Contrast⁴
- This patient has none of these

Interpretation of Urine Studies in Hyponatremia

- Low urine sodium <20mmol/L
 - Low solute intake
 - Decreased renal perfusion → Increased sodium reabsorption
 - Volume overload or depleted
- High urine sodium >20mmol/L
 - Diuretics
 - Normal renal perfusion
 - Acute Tubular Necrosis (ATN)
- Urine osmolality
 - Variable 50-1,200 mOsm/kg
 - Vasopressin activity → Increased water reabsorption → Higher urine osmolality

Triggers for ADH release

- Increased serum osmolality
- Non-osmotic stimuli for ADH release
 - Decreased effective circulating volume
 - Pain
 - Stress
 - Pulmonary disease
 - Cancer
 - Nausea
 - Medications (SSRI, Antipsychotics, etc.)
- Thiazide diuretics can cause hyponatremia as well

SIADH Treatment

Fluid restriction

 Decreased water intake → decreased water reabsorption

Tolvaptan

- Blocks the reabsorption of water
- Must remove fluid restriction
- 3% saline

Increased solute intake

- Salt tablets
- Urea
- High protein diet

Loop diuretics

 This combination changes the concentration gradients between the interstitium and tubules → decreased water reabsorption

- Goal correction for symptomatic hyponatremia is around 4mEq/L within a few hours
- Over a 24 hour period goal is no more 8mEq/L
- This patients sodium begins to correct with a bolus of 100cc of 3% saline initially.
- He is transitioned to Furosemide 10mg BID, NaCl tabs 2g TID and fluid restriction of 1.2L
- His hospital course is complicated by aspiration pneumonia requiring intubation for 4 days.

Day 13 Labs:

- Na 140 mmol/L
- K 3.5 mmol/L
- Cl 100 mmol/L
- CO₂ 10 mmol/L
- AG 30 mmol/L
- BUN 65 mg/dL
- Cr 0.65 mg/dL

- VBG
 - pH 7.22
 - pCO₂ 23 mmHg
 - Bicarbonate 9 mmol/L
 - Lactate normal

Primary Disturbance

A/B Disturbance	pH 7.35-7.45 7.22	pCO ₂ 35-45mmHg 23	HCO ₃ - 22-26mEq/L 10
Metabolic Acidosis	\	↓	↓
Metabolic Alkalosis	1	↑	↑
Respiratory Acidosis (HCO ₃ - acute/chronic)	↓	^	Normal/↑
Respiratory Alkalosis Always acute	↑	\	Normal

Acid-Base Disturbance

- pH- Normal 7.35-7.45
 pH 7.22 is low so it is acidotic
- 2. What is the primary disturbance?
 - ➤ Metabolic Acidosis
- 3. What is the AG? Na (Cl+ Bicarbonate)
 - ➤ High at 30, albumin normal at 4
- 4. Is there compensation?
 - \triangleright Expected pCO₂ 23 +/- 2
 - >Actual pCO₂ 23
 - > Yes
- 5. Primary HAGMA--so why is this happening?

Table 1. GOLDMARK Mnemonic for the High Anion Gap Metabolic Acidoses

Letter Parameter		Potential causes
G	Glycols	Ingestion/infusion of ethylene, propylene, or diethylene glycol; metabolism generates glyoxylic, oxalic, D and L lactic acid.
0	5-Oxoproline	Chronic acetaminophen use can generate 5-oxoproline (a strong acid that is also called pyroglutamic acid).
L	L-Lactic acidosis	Multiple etiologies of types A and type B lactic acidosis.
D	D-Lactic acidosis	Carbohydrate loading in patients with short gut syndromes.
М	Methanol	Metabolism generates formic acid.
Α	Aspirin	Toxic levels generate multiple organic acids including keto acids.
R	Renal failure	Accumulation of multiple inorganic and organic acids including sulfuric and phosphoric acid.
K	Ketoacidosis	B-OH butyric and acetoacetic acid.
_		1: 14 1

Based on mnemonic proposed in Mehta et al, Lancet. 2008;372(9642):892.

Approach to Patients With High Anion
Gap Metabolic Acidosis: Core Curriculum
2021 AJKD Vol 78 | Iss 4 | October 2021

- Lactate normal
- B-OH normal
- Unlikely ingestion

- MAR review: Acetaminophen 650mg 3-4 times a day for the last week.
- Glutathione and cysteine deficiency accelerates generation and accumulation of 5-Oxoproline (pyroglutamic acid)
- Occurs in malnourish, ill patients who have chronic Acetaminophen ingestion
- Treatment: Stop Acetaminophen

- 34 year old female comes to the ER with 40 pound weight gain, lower extremity edema and progressive dyspnea on exertion over the last 2 weeks. She has run out of all her medications
- PMH: Non-ischemic cardiomyopathy LVEF 15% from cocaine
- Medications:
 - ASA 81mg
 - Atorvastatin 40mg
 - Carvedilol 12.5mg BID
 - Valsartan 40mg
 - Spironolactone 12.5mg
 - Furosemide 40mg daily
 - Empagliflozin 25mg

- Vitals:
 - Temp 98.2
 - BP 147/90
 - HR 101
 - RR 30
 - O₂ 92% 4L NC

- PE:
 - General: Appears in distress
 - Cardiac: Tachycardic
 - Respiratory: Bibasilar crackles
 - Abdomen: Distended
 - Extremities: 3+ pitting edema

- Na 122 mmol/L
- K 5.3 mmol/L
- Cl 90 mmol/L
- CO₂ 25 mmol/L
- AG 7 mmol/L
- BUN 37 mg/dL
- Cr 1.9 mg/dL (previously 0.8
- GFR 44 cc/min (previously GFR 75cc/min)

- VBG
 - pH 7.12
 - pCO₂ 79 mmHg
 - Bicarbonate 25 mmol/L
 - Lactate 1 mmol/L

Hyponatremia

Hypervolemic Hyponatremia Management:

DIURESIS

• IV Intermittent Bolus (BID-TID)

OR

• IV **Bolus** followed by Continuous Infusion

Acute Kidney Injury

Causes of AKI

	_
URINALYSIS, MACROSCOPIC AN	•
URINALYSIS, MACROSCOPIC	•
APPEARANCE	Cloudy !
COLOR	Normal (Yell
SPECIFIC GRAVITY, URINE	1.014
GLUCOSE	Negative
BILIRUBIN	Negative
KETONES	Negative
BLOOD	Negative
PH URINE	7.0
PROTEIN	Negative
UROBILINOGEN	Negative
NITRITE	Negative
LEUKOCYTES	Negative
URINALYSIS, MICROSCOPIC	
RBC'S	2.0
WBC'S	1.0
BACTERIA	Occasional o

- Urine Osmolality 324mOsm/kg
- Urine Sodium 19 mmol/L
- FeNa = 0.4%
- FeUrea = 23%
- Protein/Creatinine ratio: 200mg/g
- Bland urine
- Renal US: No obstruction
- Pre-renal: Volume overload

Acid-Base Disturbance

Primary Disturbance

A/B Disturbance	pH 7.35-7.45 7.12	pCO ₂ 35-45mmHg 79	HCO ₃ - 22-26mEq/L 25
Metabolic Acidosis	\	\	\
Metabolic Alkalosis	↑	↑	↑
Respiratory Acidosis (HCO ₃ - acute/chronic)	\	^	Normal/↑
Respiratory Alkalosis Always acute	1	\	Normal

Rough Compensation Rules

Acute Respiratory				
Acidosis	↑ 10 pCO ₂	↑1 HCO ₃ -		
Alkalosis	↓ 10 pCO ₂	↓2 HCO ₃ -		
	Chronic Respiratory			
Acidosis	↑ 10 pCO ₂	↑3 HCO ₃ -		
Alkalosis	↓ 10 pCO ₂	↓ 4 HCO ₃ -		
Metabolic				
Acidosis Winters formula: Expected $pCO_2 = 1.5(HCO_3^-) + 8 (+/-2)$		D ₃ -) + 8 (+/- 2)		

Acid-Base Disturbance

- pH- Normal 7.35-7.45
 ▶pH 7.1 is low so it is acidotic
- 2. What is the primary disturbance?
 - ➤ Respiratory Acidosis
- 3. Is there compensation?
 - ➤ Not yet, this can take some time
- 4. Primary Respiratory Acidosis
- 5. Treatment—Ventilation (BiPAP or Intubation) and Diuresis

55 year old male with a PMH of HLD on Atorvastatin presents to the ER. His friend states they were at a party last night and when he went to check on his friend and he found him with altered mental status.

Vitals:

Temp 99.1

SpO₂ 88% 5L NC

RR 12

HR 115

BP: 105/73

Arterial Blood Gas

- pH 6.8
- pCO₂ 47
- Bicarbonate 7

CHEM 1	
SODIUM	132 ▼
POTASSIUM	5.1
CHLORIDE	98
CARBON DIOXIDE	7 🕶
BUN	51 ^
CREATININE	10.12 ^
GLUCOSE	81
ANION GAP	27 ^
BUN/CREAT RATIO	19
ESTIMATED GLOMERULAR FILTR	5 ▼ 🖹
CALCIUM	8.6 ▼

Acute Kidney Injury

Causes of AKI

URINALYSIS, MACROSCOPIC AN	•
URINALYSIS, MACROSCOPIC	•
APPEARANCE	Cloudy !
COLOR	Normal (Yell
SPECIFIC GRAVITY, URINE	1.014
GLUCOSE	Negative
BILIRUBIN	Negative
KETONES	Negative
BLOOD	Negative
PH URINE	7.0
PROTEIN	Negative
UROBILINOGEN	Negative
NITRITE	Negative
LEUKOCYTES	Negative
URINALYSIS, MICROSCOPIC	
RBC'S	2.0
WBC'S	1.0
BACTERIA	Occasional o

- Urine Osmolality 374mOsm/kg
- Urine Sodium 47 mmol/L
- FeNa = 2.7%
- FeUrea = 63%
- Protein/Creatinine ratio: 245mg/g
- Bland urine
- Oxalate crystals are noted
- Renal US: No obstruction
- Likely ATN/Oxalate deposition

Acid-Base Disturbance

- pH- Normal 7.35-7.45
 ▶pH 6.8 is low so it is acidotic
- 2. What is the primary disturbance?
 - ➤ Metabolic Acidosis
- 3. What is the AG? Na (Cl+ Bicarbonate)
 - ➤ High at 27, albumin is normal at 4
- 4. Is there compensation?
 - \triangleright Expected pCO₂ 18 +/- 2
 - ➤ Actual pCO₂ 47
 - **≻**No
- 5. Primary HAGMA with Respiratory Acidosis

Table 1. GOLDMARK Mnemonic for the High Anion Gap Metabolic Acidoses

Letter	Parameter	Potential causes
G	Glycols	Ingestion/infusion of ethylene, propylene, or diethylene glycol; metabolism generates glyoxylic, oxalic, D and L lactic acid.
0	5-Oxoproline	Chronic acetaminophen use can generate 5-oxoproline (a strong acid that is also called pyroglutamic acid).
L	L-Lactic acidosis	Multiple etiologies of types A and type B lactic acidosis.
D	D-Lactic acidosis	Carbohydrate loading in patients with short gut syndromes.
M	Methanol	Metabolism generates formic acid.
Α	Aspirin	Toxic levels generate multiple organic acids including keto acids.
R	Renal failure	Accumulation of multiple inorganic and
		organic acids including sulfuric and phosphoric acid.
K	Ketoacidosis	B-OH butyric and acetoacetic acid.
Based o	on mnemonic prop	osed in Mehta et al, Lancet. 2008;372(9642):892.

Approach to Patients With High Anion

Gap Metabolic Acidosis: Core Curriculum

2021 AJKD Vol 78 | Iss 4 | October 2021

- Lactate: 2.7 mmol/L (normal <1.5)
- Serum Ethanol: 0
- Serum ASA/Acetaminophen: 0
- Beta-Hydroxybutyrate:0.2mmol/L (normal < 0.4)
- Serum Methanol: Pending
- Serum Glycol: Pending
- Serum Osmolality: 324 mOsm/kg
- Calculated Osmolality: 287 mOsm/kg
- Osmolar Gap: 37 mOsm/kg

Osmolar Gap

- Measured serum osmolality calculated osmolality
 - >10 mosmol/kg is abnormal
- Calculated serum osmolality = 2(Na) + Glucose/18 + BUN/2.8
- When an osmolar gap is present that means there are osmoles detected by the lab that have not been identified yet
- More commonly seen in
 - Ethylene glycol ingestion
 - Methanol ingestion
 - Diethylene glycol
 - Propylene glycol infusion
 - IVIG
 - Mannitol

Figure 1

The Role of the Nephrologist in Management of A Metabolic Pathways of Toxic Alcohols Poisoning and Intoxication: Core Curriculum 2022 Michael E. Mullins and Jeffrey A. Kraut AJKD Vol 79 | Iss 6 | June 2022 Alcohol Aldehyde Dehydrogenase Dehydrogenase Ethylene glycol Glycoaldehyde Glycolate+H+ Oxalate+H+ HOCH2CH2OH Methanol Formaldehyde Formate+H+ CH₃OH Propylene glycol Lactaldehyde Lactate+H+ ,OH 2-Hydroxyethoxy-2-Hydroxyethoxy-Diethylene glycol Diglycolate+H+ acetaldehyde acetate+H+ HO Isopropanol Acetone Elevated osmolal gap Elevated anion gap

Figure 1

Toxic Alcohol Management

Box 1. Indications for Hemodialysis

Toxic Alcohols

- Ethylene glycol or methanol concentration > 50 mg/dL without ADH inhibitor (fomepizole or ethanol)
- Ethylene glycol concentration > 200-300 mg/dL with ADH inhibitor and normal kidney function
- Methanol concentration > 70 mg/dL with ADH inhibitor and normal kidney function
- Isopropanol concentration > 400-500 mg/dL
- Any toxic alcohol: severe acidemia (pH < 7.2) or AKI
- Dialysis removes methanol and ethylene glycol

Dialysis Indications for This Patient

Acidosis

Electrolytes

≻Hyperkalemia

Ingestions

Methanol, Ethylene glycol, Metformin, ASA, Lithium

Oliguria

Uremia

Constellation of symptoms caused by the build up of uremic toxins

30 year old female with PMHx of endometriosis is POD #6 from hysterectomy. She comes to the ER with worsening abdominal pain, nausea and vomiting.

- Vitals:
 - Afebrile
 - HR 113
 - BP 110/60
- Physical Exam:
 - Abdomen: distended, hypoactive bowel sounds, diffusely TTP
- CT A/P shows dilated small bowel loops with transition point in the distal small bowel with post operative changes in the pelvis.
- Surgery recommends NG tube is placement

Admission Labs

- Na 137 mmol/L
- K 4.1 mmol/L
- Cl 104 mmol/L
- CO₂ 23 mmol/L
- BUN 37 mg/dL
- Cr 0.9 mg/dL
- VBG
 - pH 7.41
 - pCO₂ 36 mmHg
 - Bicarbonate 22 mmol/L

Labs 2 days into Admission

- Na 133 mmol/L
- K 2.9 mmol/L
- Cl 80 mmol/L
- CO₂ 37 mmol/L
- BUN 42 mg/dL
- Cr 1.1 mg/dL
- VBG
 - pH 7.5
 - pCO₂ 47 mmHg
 - Bicarbonate 37 mmol/L

Acid-Base Disturbance

Primary Disturbance

A/B Disturbance	pH 7.35-7.45 7.5	pCO ₂ 35-45mmHg 47	HCO ₃ - 22-26mEq/L 37
Metabolic Acidosis	\	\	\
Metabolic Alkalosis	个	↑	↑
Respiratory Acidosis (HCO ₃ - acute/chronic)	\	↑	Normal/个
Respiratory Alkalosis Always acute	↑	\	Normal

Metabolic Alkalosis Pathogenesis, Diagnosis, and Treatment: Core Curriculum 2022 AJKD Vol 80 | Iss 4 | October 2022

Catherine Do, Pamela C. Vasquez, and Manoocher Soleimani

Metabolic Alkalosis: Arterial pH > 7.44; [HCO₃-] > 27 mEq/L

Figure 6. Algorithm for an approach to metabolic alkalosis based on urine chloride. Abbreviations: AME, apparent mineralocorticoid excess; CHF, congestive heart failure; GI, gastrointestinal; GRA, glucocorticoid-remediable aldosteronism; NG, nasogastric.*Cystic fibrosis may present with either low (<20 mmol/L) or high (>20 mmol/L) urine chloride.

Evaluation and Management

- Her urine Cl⁻ is <20mmol/L
- Management
 - Giving chloride rich IVF
 - Normal Saline
 - Lactated Ringers
 - Plasma-Lyte
 - Replacing potassium
 - Getting NG tube out when possible

27 year old male comes to the ER with bloody, perfuse watery diarrhea for 3 days. He is feeling fatigued and having cramping abdominal pain.

Vitals:

- Temp: 100 F
- BP 80/50
- HR 119
- RR 24
- Weight: 100kg
- Physical exam:
 - Sick appearing
 - Abd: soft, diffuse TTP, no rebound or guarding

• Labs:

- Na 115
- K 3.2
- Cl 91
- CO₂ 15
- AG 9
- Creatinine 1.7
- pH 7.35
- pCO₂ 26
- Bicarbonate 15

Hyponatremia

Acid-Base Disturbance

Primary Disturbance

A/B Disturbance	pH 7.35-7.45 7.35	pCO ₂ 35-45mmHg 28	HCO ₃ - 22-26mEq/L 15
Metabolic Acidosis	\	\	↓
Metabolic Alkalosis	↑	↑	↑
Respiratory Acidosis (HCO ₃ - acute/chronic)	↓	^	Normal/↑
Respiratory Alkalosis Always acute	↑	\	Normal

Acid-Base Disturbance

- Primary Metabolic Acidosis
- Normal Anion Gap: 9—normal albumin
- Respiratory Compensation
- Final diagnosis
 - Non-Anion Gap Metabolic Acidosis

Acid-Base Disorders in the Critically III Patient

Anand Achanti and Harold M. Szerlip CJASN 18: 102–112, January, 2023

Figure 6. | Etiology of a non-gap metabolic acidosis.

Acute Kidney Injury

URINALYSIS, MACROSCOPIC AN	•
URINALYSIS, MACROSCOPIC	•
APPEARANCE	Cloudy !
COLOR	Normal (Yell
SPECIFIC GRAVITY, URINE	>1.030 ^
GLUCOSE	Negative
BILIRUBIN	Negative
KETONES	Negative
BLOOD	Negative
PH URINE	7.0
PROTEIN	Negative
UROBILINOGEN	Negative
NITRITE	Negative
LEUKOCYTES	Negative
URINALYSIS, MICROSCOPIC	
RBC'S	2.0
WBC'S	1.0
BACTERIA	Occasional o

- Urine Osmolality 465mOsm/kg
- Urine Sodium <20 mmol/L
- FeNa = 0.7%
- FeUrea = 13%
- Protein/Creatinine ratio: 256mg/g
- Renal US: No obstruction
- Pre-renal: Volume depletion

Management

Metabolic Acidosis

- Treat diarrhea
- Replace bicarbonate
 - LR, Plasma-Lyte

AKI

- Replace volume
 - NS, LR, Plasma-Lyte

Hyponatremia

- IVF
 - NS, LR, Plasma-Lyte
- Overcorrection is a big concern
- Replacing potassium will cause sodium to rise

Hyponatremia Overcorrection Management

- The patient receives 3L NS and repeat serum sodium 4 hours later is now 125.
- 1. Stop NS
- 2. Is this acute or chronic hyponatremia?
 - <48 hours acute
 - >48 hours chronic
 - If unknown treat as chronic
- 3. Give D5W bolus and IV D5W
- 4. Give DDAVP

How much D5W to give?

- Change in serum Na⁺ = (Infusate Na⁺ Serum Na⁺) ÷ (TBW + 1)
- TBW = weight (kg) x correction factor
 - Water composition correction factor
 - 50% (young) and 45% (elderly) of lean weight (kg) in females
 - 60% (young) and 50% (elderly) of lean weight (kg) in young males⁶
- Change in serum $Na^+ = (0-125) \div (50L + 1) = 2.5 \text{mmol/L D5W given}$
- So they would need roughly 2L D5W
- Giving DDAVP along with the D5W helps prevent water diuresis

Overcorrection of hyponatremia is a medical emergency Kidney International (2009) 76

Take Home Points

- Hyperkalemia
 - Temporizing measures vs potassium removal
- Acid-Base
 - Walking through in an orderly fashion
- Hyponatremia
 - Check serum/urine osmolality and urine sodium
 - Be careful of over correction in the hypovolemic hyponatremia
- Dialysis indications
 - A,E,I,O,U

References

- Renal Association Clinical Practice Guidelines Treatment of Acute Hyperkalemia in Adults. July 2020. 1-161
- 2. Montague, B. (2008). Retrospective Review of the Frequency of ECG Changes in Hyperkalemia. *CJASN*, *3*, 324–330.
- 3. Palmer, B. (2021). Clinical Management of Hyperkalemia. *Mayo Clinic Proceedings*, 96(3), 744–762.
- 4. Johnson, R. (2015). *Comprehensive Clinical Nephrology* (5th ed.). Philadelphia, PA: Elsevier Saunders.
- 5. Rose, B. D., & Post, T. W. (2001). *Clinical physiology of acid-base and electrolyte disorders*. (5th ed.). New York: McGraw-Hill.
- 6. Reilly, R., Jr., & Perazella, M. (2014). *Nephrology in 30 Day*. McGraw-Hill. ISBN 978-0-07-178840-3