
Physiologic Debris and Detritus plugging the biologic pipes?

Management of Coronary Artery Disease

Viet Le, DMSc PA-C FACC FAHA

Associate Professor of Research/Preventive Cardiology, Intermountain Heart & Vascular Pres-Elect, Utah Academy of PAs Past President, Association of PAs in Cardiology Adjunct Faculty, Rocky Mtn Univ of Health Professions @VietHeartPA

Conflict of Interest

I will/will not discuss off-label use or investigation use in my presentation

I have a research grant from Janssen. I am an Ad Hoc Consultant for Novartis.

*All of the relevant financial relationships listed for this individual have been mitigated.

Objectives

- Outline the pathophysiology of coronary artery diseases and review atherosclerotic cardiovascular disease (ASCVD; CAD/MI, Ischemic Stroke, and Peripheral Artery Disease)
- Summarize the risk factors associated with atherosclerotic CAD.
- Explain the modifiable factors to reduce recurring coronary artery disease events.
- Discuss acute to chronic management of CAD (pharmacologic, surveillance, surgical and activity safety/"clearance") and review the role of the interprofessional team in improving outcomes for patients with CAD
- Review potential acute and chronic sequelae of CAD events

Not all MI's are the same: Type 1 - 5

vation of cardiac biom

ogical O waves or new

ocardium or new region

ary artery disease; cTn, can

percutaneous coronary inter

TABLE A

Universal Classification of MI

Type 1: Spontaneous MI

Spontaneous MI related to atherosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection with resulting intraluminal thrombus in ≥1 of the coronary arteries leading to decreased myocardial blood flow or distal platelet emboli with ensuing myocyte necrosis. The patient may have underlying severe CAD, but on occasion nonobstructive or no CAD.

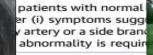
Type 2: MI secondary to ischemic imbalance

In instances of myocardial injury with necrosis where a condition other than CAD contributes to an imbalance between MVO₂, e.g., coronary endothelial dysfunction, coronary artery spasm, coronary embolism, tachy-/bradyarrhythmias, anemia, respiratory failure, hypotension, and hypertension with or without LVH.

Type 3: MI resulting in death when biomarker values are unavailable

Cardiac death with symptoms suggestive of myocardial ischemia and presumed new ischemic electrocardiographic changes or new LBBB, but death occurred before blood samples could be obtained, before cardiac biomarker testing.

rily defined by el line values are e s or new LBBB, (on of new loss o


rombosis

Type 5: MI related to CA

MI associated with CABG percentile URL). In ac or (iii) imaging evide

CABG indicates coronary at infarction; MVO₂, myocard Modified from Thygesen er

J Am lintermountain J Am lintermountain J Am lintermountain J Am lintermountain

of myocardial ischemi

oiomarker

or a rise

ischemic

olization,

s (<99th

ock; LVH, left ventricular hypertrophy; MI, myocardial

Not all MI's are the same: Type 1 - 5

TABLE A

Universal Classification of MI

Type 1: Spontaneous MI

Spontaneous MI related to atherosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection with resulting intraluminal thrombus in ≥1 of the coronary arteries leading to decreased myocardial blood flow or distal platelet emboli with ensuing myocyte necrosis. The patient may have underlying severe CAD, but on occasion nonobstructive or no CAD.

Type 2: MI secondary to ischemic imbalance

In instances of myocardial injury with necrosis where a condition other than CAD contributes to an imbalance between MVO₂, e.g., coronary endothelial dysfunction, coronary artery spasm, coronary embolism, tachy-/bradyarrhythmias, anemia, respiratory failure, hypotension, and hypertension with or without LVH.

Type 3: MI resulting in death when biomarker values are unavailable

Cardiac death with symptoms suggestive of myocardial ischemia and presumed new ischemic electrocardiographic changes or new LBBB, but death occurred before blood samples could be obtained, before cardiac biomarker could rise, or in rare cases where blood was not collected for cardiac biomarker testing.

Type 4a: MI related to PCI

MI associated with PCI is arbitrarily defined by elevation of cTn values >5 × 99th percentile URL in patients with normal baseline values (<99th percentile URL) or a rise of cTn values >20% if baseline values are elevated and are stable or falling. In addition, either (i) symptoms suggestive of myocardial ischemia, (ii) new ischemic electrocardiographic changes or new LBBB, (iii) angiographic loss of patency of a major coronary artery or a side branch or persistent slow or no flow or embolization, or (iv) imaging demonstration of new loss of viable myocardium or new regional wall motion abnormality is required.

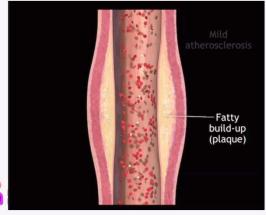
Type 4b: MI related to stent thrombosis

MI associated with stent thrombosis is detected by coronary angiography or autopsy in the setting of myocardial ischemia and with a rise and/or fall of cardiac biomarker values with ≥1 value above the 99th percentile URL.

Type 5: MI related to CABG

MI associated with CABG is arbitrarily defined by elevation of cardiac biomarker values >10 × 99th percentile URL in patients with normal baseline cTn values (<99th percentile URL). In addition, either (i) new pathological Q waves or new LBBB, or (ii) angiographically documented new graft or new native coronary artery occlusion, or (iii) imaging evidence of new loss of viable myocardium or new regional wall motion abnormality.

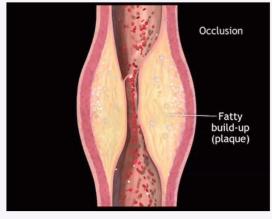
CABG indicates coronary artery bypass graft; CAD, coronary artery disease; cTn, cardiac troponin; LBBB, left bundle-branch block; LVH, left ventricular hypertrophy; MI, myocardial infarction; MVO₂, myocardial oxygen consumption; PCI, percutaneous coronary intervention; and URL, upper reference limit.


Modified from Thygesen et al. (21).

J Am en termountain J Am en termountain

Acute Coronary Syndrome/Chronic Stable

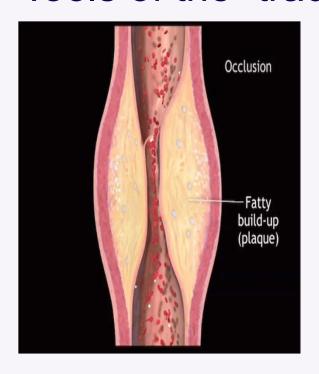
Stable Angina

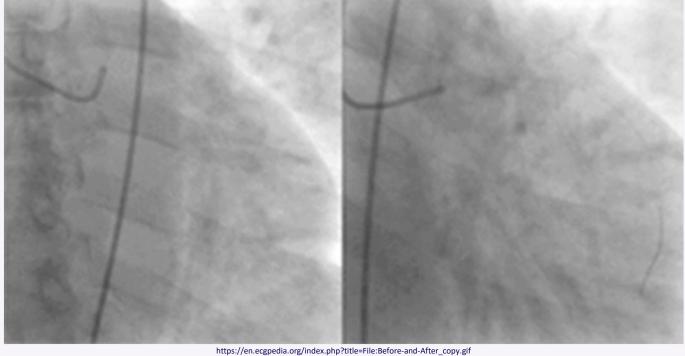

NSTE-ACS

STEMI

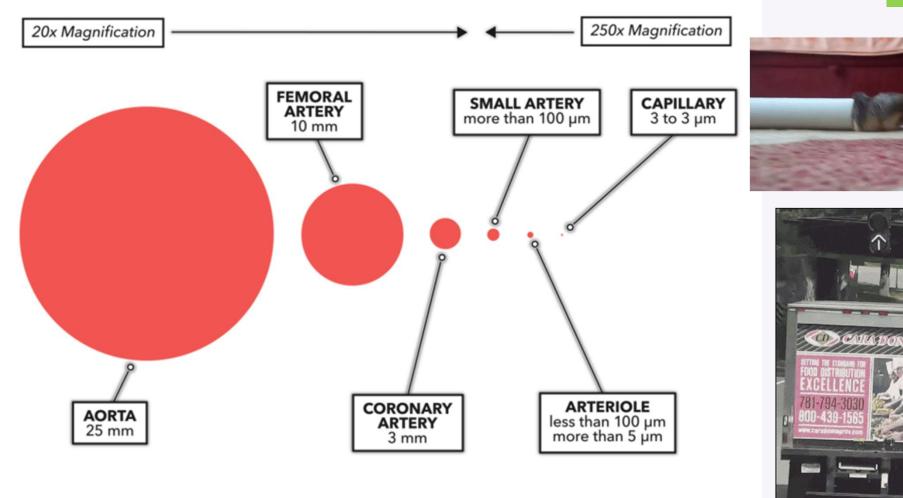
Tools of the "trade"

https://www.plumbing-draincleaning.com/drain-cleaning.html





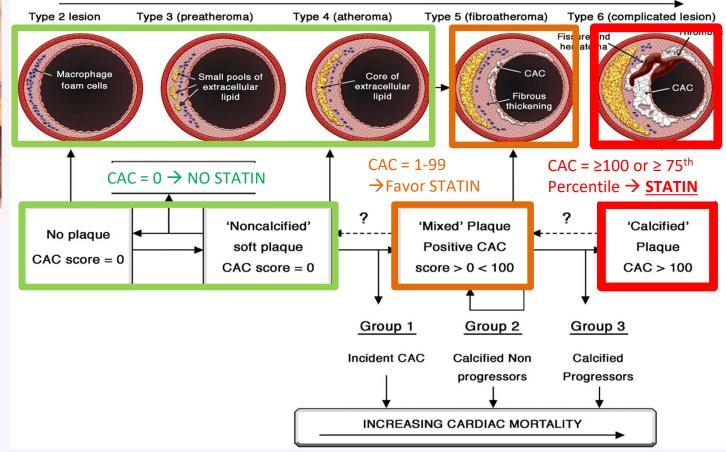
www.amazon.com%zPupgraded-Anti-break-Plumbing-Bathroom-Cleaning%zPdp%zPB09GK99MQ48psig=AOvVaw3iT004RoxDvHDBTSVcXh4y&ust=1668264017895000&source=images&cd=vfe&ved=0CAOQ 3YKBahcKEWJYtQeVr6b7ZhIUAAAAAHQAAAAAQAw


Tools of the "trade"

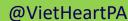
@VietHeartPA

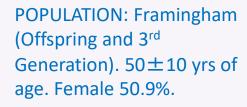
https://www.memoustaint.com/essentials/the-heart-part-6-blood-vessel-basics; Lorbeer. 2018. PLoS One. 13(6): e0197559; Dodge Jr. 1992. Circulation. 86:232–246; Paruchuri. 2015. Cardiology. 131:265-272

Coronary Calcium and statin eligibility (2019 GL)



 $CAC = 0 \rightarrow NO STATIN$


CAC = 1-99 → Favor STATIN

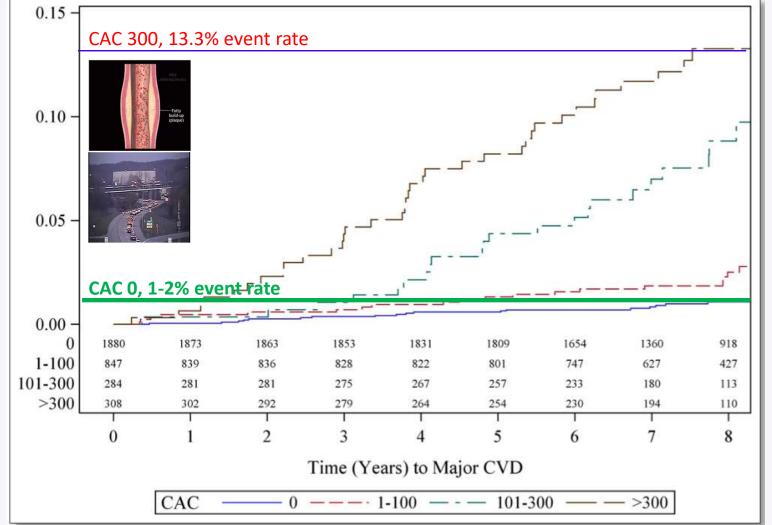

CAC = \geq 100 or \geq 75th Percentile \rightarrow **STATIN**

McEvoy, et al, JACC 2010. https://doi.org/10.1016/j.jacc.2010.06.038

1 coronary heart disease (CHD),

2 stroke, and

3 peripheral arterial disease.


Additionally, authors included

4 MI, and

5 death from CHD (i.e., fatal coronary event, MI, or

cerebrovascular accident [i.e., ischemic stroke,

hemorrhagic stroke]).

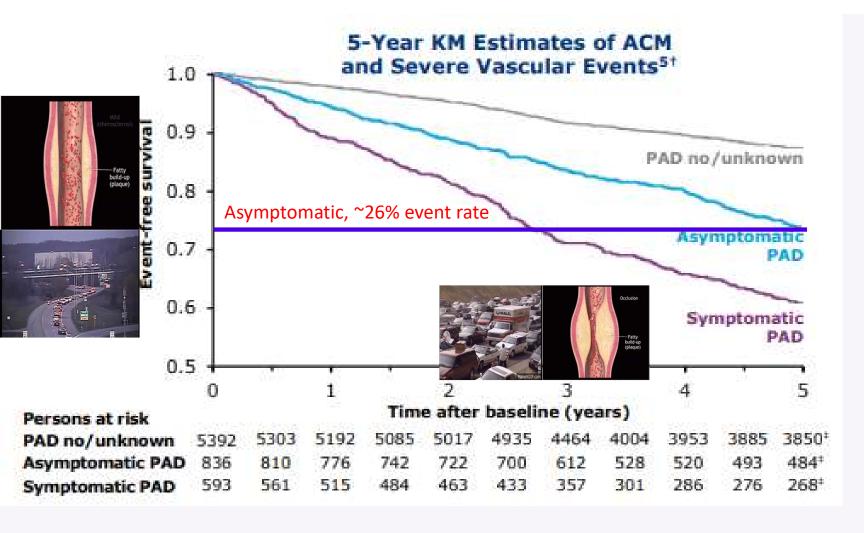
Hoffman Health AHA. 2016 Feb 22;5(2):e003144

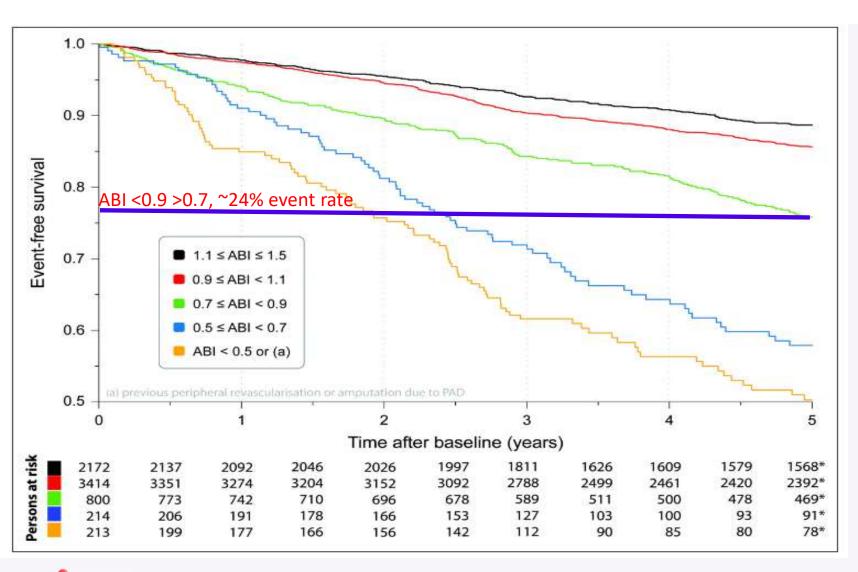
ABI WORKSHEET

	Ankle-Brachial Index Interpretation Above 0.90: Normal 0.71 - 0.90: Mild Obstruction 0.41 - 0.70: Moderate Obstruction 0.00 - 0.40: Severe Obstruction		
Right Arm: Systolic Pressure mmHg	Left Arm: Systolic Pressure mmHg		
Right Ankle: Systolic Pressure Posterior Tibial (PT)	Left Ankle: Systolic Pressure Posterior Tibial (PT) mmHg Dorsalis Pedis (DP) mmHg		
Right ABI equals Ratio of: Higher of the Right Ankle Pressures (PT or DP) Higher Arm Pressure (right or left arm)	mmHg =*		
Left ABI equals Ratio of: Higher of the Left Ankle Pressures (PT or DP) Higher Arm Pressure (right or left arm)	mmHg =*		
* The lower of these numbers is the patient's overall ABI. Overall ABI (lower ABI) =			

@VietHeartPA

Vesse	Disease		ABI	ТВІ	Doppler	PVR
Calcifie	ed Vessel	100 to 0	> 1.4	unaffected	MMM	AMM
Norma	l	00 to 0	0.9 - 1.4	> 0.6		AMM
Mild PA	AD	10 S 10 S	0.7 - 0.89	0.34 - 0.59		
Modera	ate PAD	0 5 12 5	0.51 - 0.69	0.12 - 0.34		~~~
Severe	PAD		≤ 0. <u>5</u>	≤ 0.11	mm	


Sibley III. 2017. Radiographics. 37:1, 346-357


@VietHeartPA

Older: 72 Female: 58% ABI >1.5 excluded

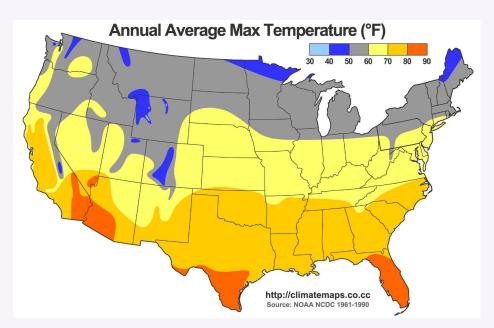
OUTCOMES:

1 all-cause mortality
OR severe vascular
events
2 myocardial
infarction,
3 coronary
revascularization,
4 stroke,
5 carotid
revascularization,
6 peripheral
revascularization, or
7 amputation

@VietHeartPA

Older: 72 Female: 58% ABI >1.5 excluded

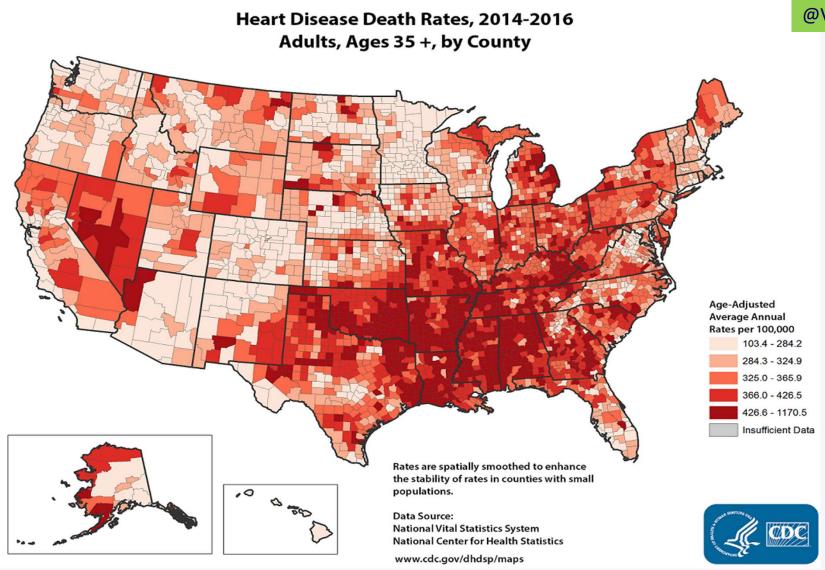
OUTCOMES:

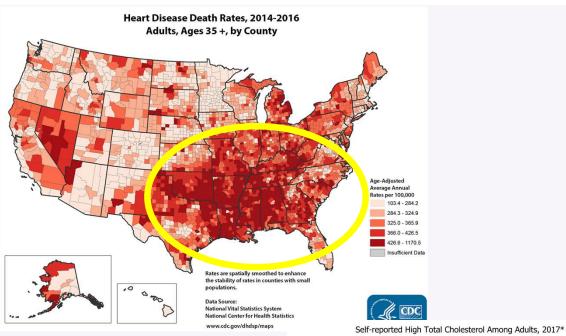

1 all-cause mortality
OR severe vascular
events
2 myocardial
infarction,
3 coronary
revascularization,
4 stroke,
5 carotid
revascularization,
6 peripheral
revascularization, or
7 amputation

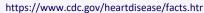
Where would you find a stand of trees that would most likely yield apples?

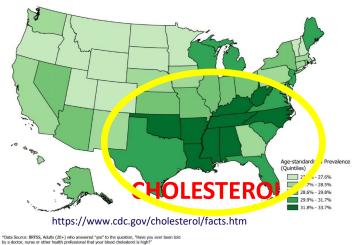
https://web.extension.illinois.edu/apples/images/us_map.gif

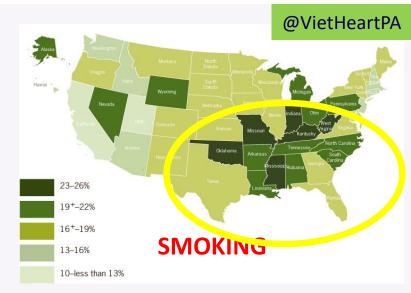
https://en.wikipedia.org/wiki/Climate_of_the_United_States

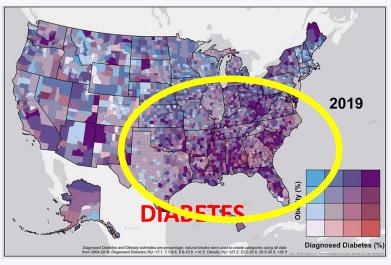

Which stand of trees would you most likely find apples?








https://www.cdc.gov/heartdisease/facts.htm



Intermountain

https://www.cdc.gov/vitalsigns/tobaccouse/smoking/infographic.html

https://www.cdc.gov/diabetes/data/center/slides.html

Traditional risk factors in First MI

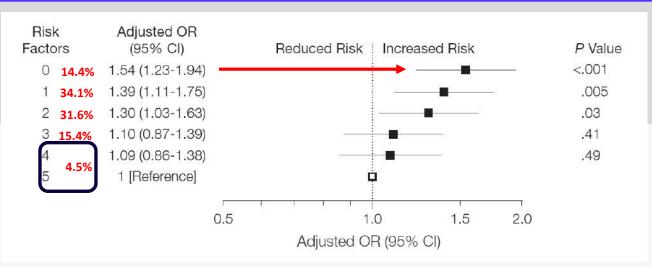
WAIT!!

• Significant number of folks with 1st MI also have 0 RF; in addition, they may have an increased risk of death.

• In 542,008 patients presenting with a first myocardial infarction: the percentage with 0, 1, 2, 3, and 4 risk factors was 14.4%, 34.1%, 31.6%, 15.4%, and 4.1%,

respectively

Risk Factors:


Hypertension

Smoking

Dyslipidemia

Diabetes

Family Hx of CAD

Canto et al, JAMA 2011;306:2120-7.

SMuRF-Less

Intermountain data presented at ACC 22.
Patients with 1st STEMI from 20002021comparing those with standard modifiable risk factors (SMuRF)* and those without SMuRFLess.

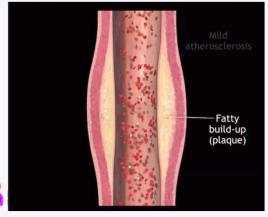
- STEMI pts (n=3,510), SMuRF-Less made up over 1 in 4 pts, or 26.2% (n=919).
- SMuRF-Less pts were younger, more frequently male, and had fewer overall co-morbidities
- While unadjusted HR for MACE favored SMuRF-Less, an adjusted HR demonstrated similar outcomes other than persistent lower HF admissions.

an Open Access Journal by MD

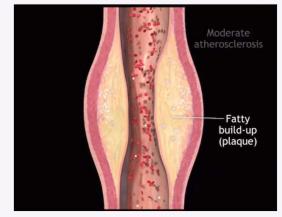
Cardiovascular Outcomes of ST-Elevation Myocardial Infarction (STEMI)
Patients without Standard Modifiable Risk Factors (SMuRF-Less): The
Intermountain Healthcare Experience

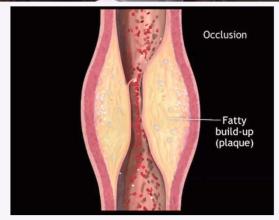
Jeffrey L. Anderson; Stacey Knight; Heidi T. May; Viet T. Le; Jawad Almajed; Tami L. Bair; Kirk U. Knowlton: Joseph B. Muhlestein

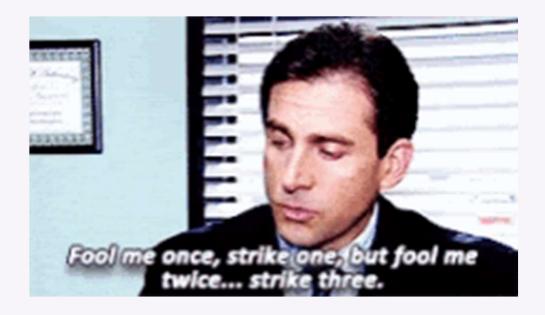
J. Clin. Med. 2023, Volume 12, Issue 1, 75


A. Demographics	SMuRF		SMuRF-less	
	n=2591		n=919	
	n	%	n	%
Age groups				
<40	85	3.28%	49	5.33%
40-49	360	13.89%	140	15.23%
50-59	720	27.79%	228	24.81%
60-69	717	27.67%	271	29.49%
70-79	471	18.18%	150	16.32%
>79	238	9.19%	80	8.71%
Gender				
Male	1885	72.75%	709	77.15%
Female	706	27.25%	210	22.85%
Race				
White/Caucasian	2260	87.23%	818	89.01%
African American	14	0.54%	8	0.87%
Asian	57	2.20%	15	1.63%
Pacific Islander	5	0.19%	3	0.33%
Unknown	255	9.84%	75	8.16%

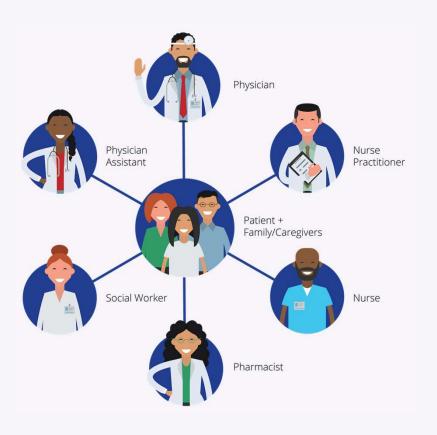
You have a patient with Atherosclerosis. Now WHAT?

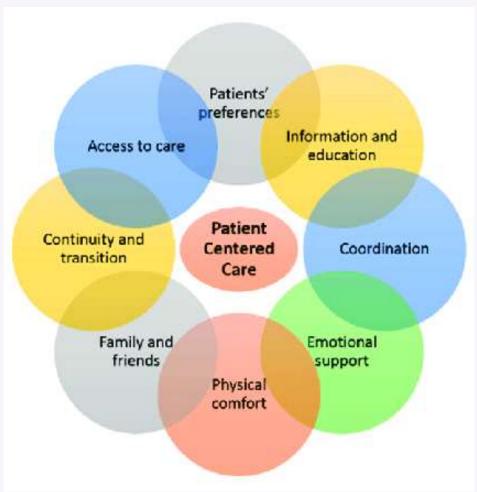

Stable Angina/Claudication

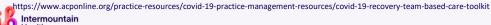




Secondary Prevention: Avoiding a 2nd Event






Find the culprits for future problems

Team-Based Care

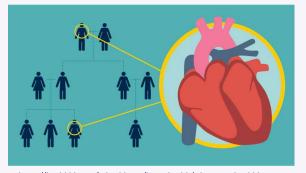
@VietHeartPA

Risk Factors

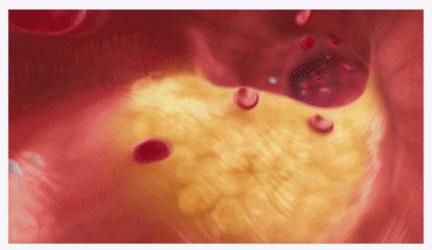
- Hypertension
- Smoking
- Dyslipidemia
- Diabetes
- Family Hx of CAD

https%3A%2F%2Fdribbble.com%2Fshots%2F209 2098-Know-Your-

Numbers&psig=AOvVaw1hJasK6jFWqkMS4GtzZ aTk&ust=1668266362677000&source=images& cd=vfe&ved=0CBEQ3YkBahcKEwig2r7Ttqb7AhU AAAAAHQAAAAAQCA

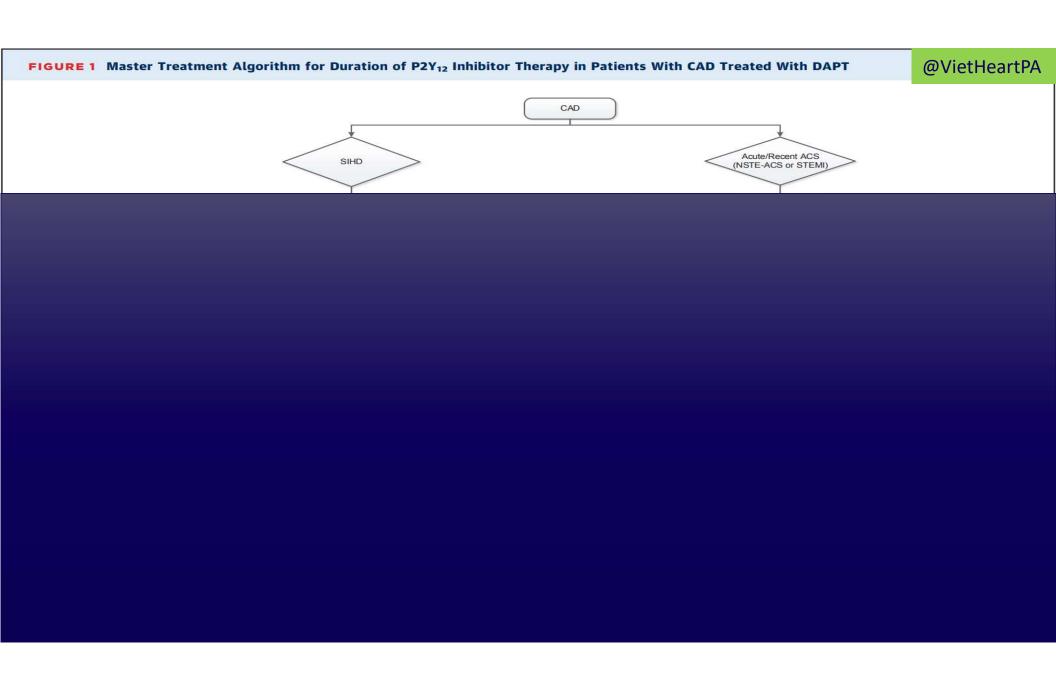

www.genengnews.com%2Fnews%2Fnovel-diabetes-therapy-might-be-found-in-protein-commonly-found-throughout-the-body%2F&psig=AOvVaw35kYHy3dHbnP8eRYj5AGm t&ust=1668266007632000&source=images&cd=vfe &ved=0CBEQ3YkBahcKEwiw_Zbwt6b7AhUAAAAAH QAAAAAQAw

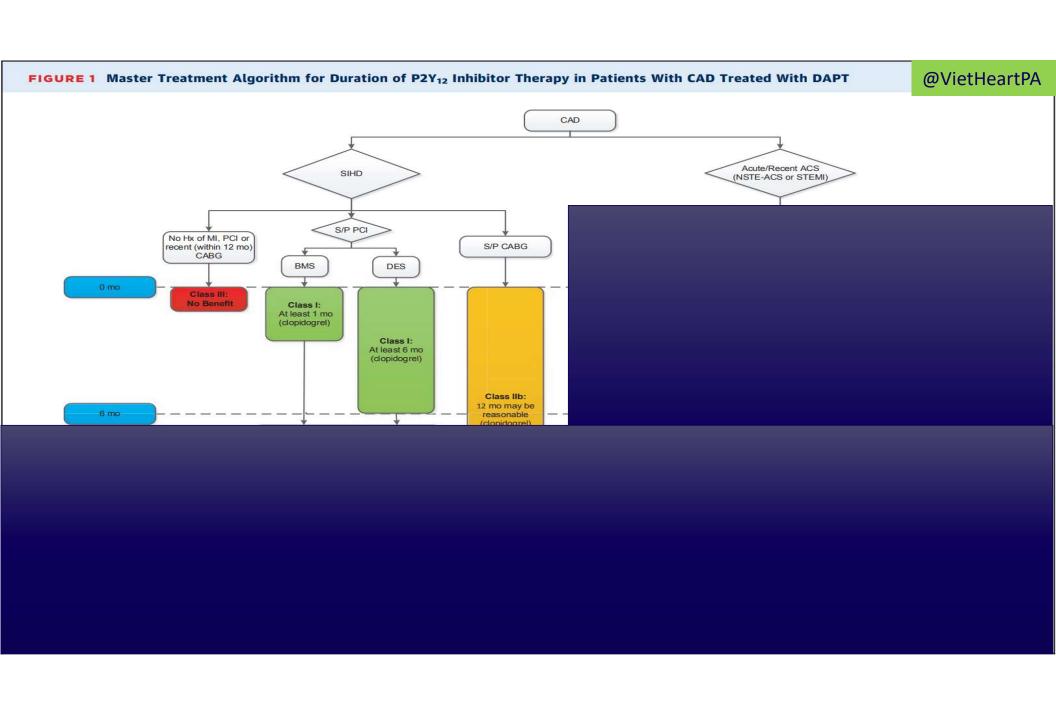
www.tandfonline.com%2Fdoi %2Fpdf%2F10.1080%2F1477 9072.2017.1372193&psig=AO vVaw3LYXMO27MMRgNzhUx bxRui&ust=16682664588000 00&source=images&cd-vfe& ved=0CBEQ3YkBahcKEwjguK SQt6b7AhUAAAAAHQAAAAA QDA

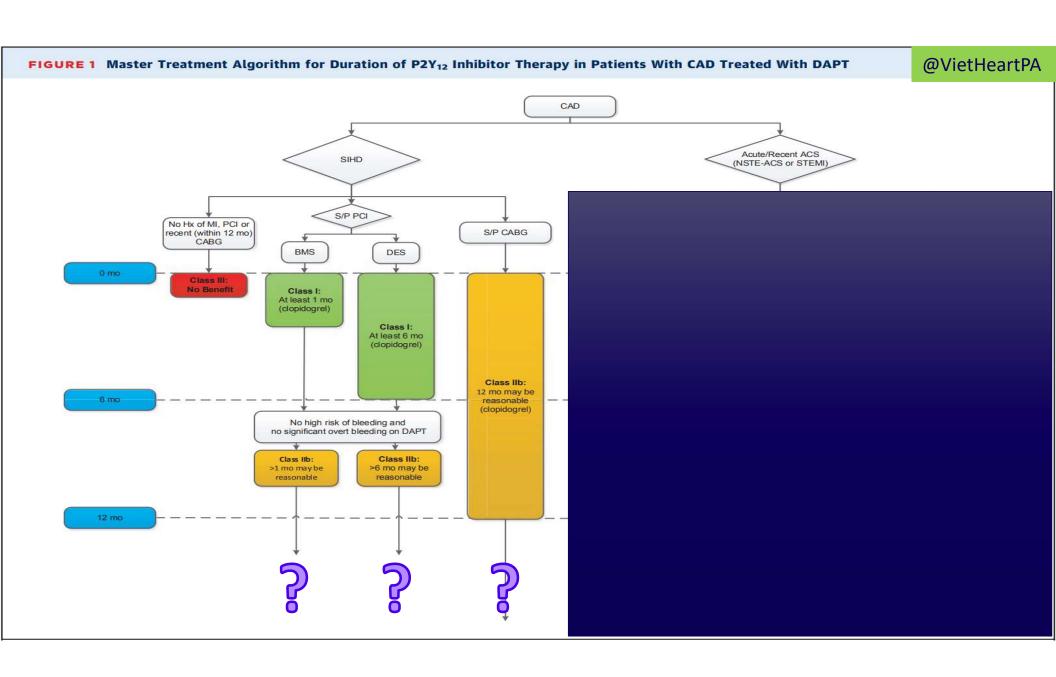

https%3A%2F%2Fgiphy.com%2Fexplore%2Fsmo kers&psig=AOvVaw2SpAccR8J5kzAqJdyxMlj1&u st=1668265641971000&source=images&cd=vfe &ved=0CBAQ3YkBahcKEwJQmMv5s6b7AhUAAA AAHQAAAAQBA

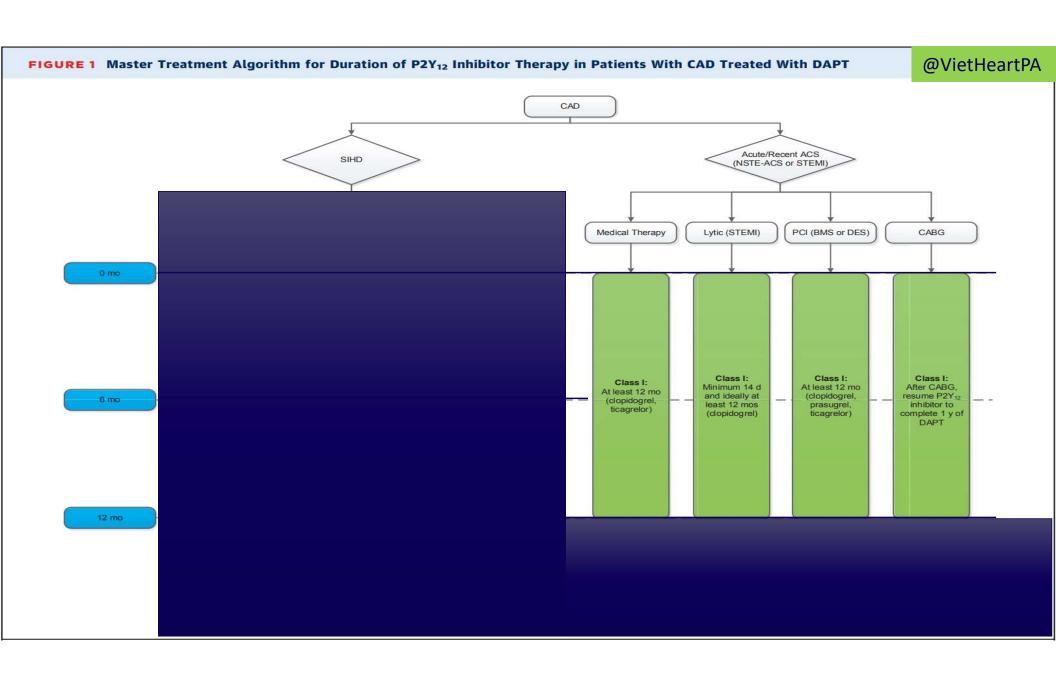
https://healthblog.uofmhealth.org/heart-health/what-you-should-know-about-counseling-and-testing-for-genetic-heart-disease

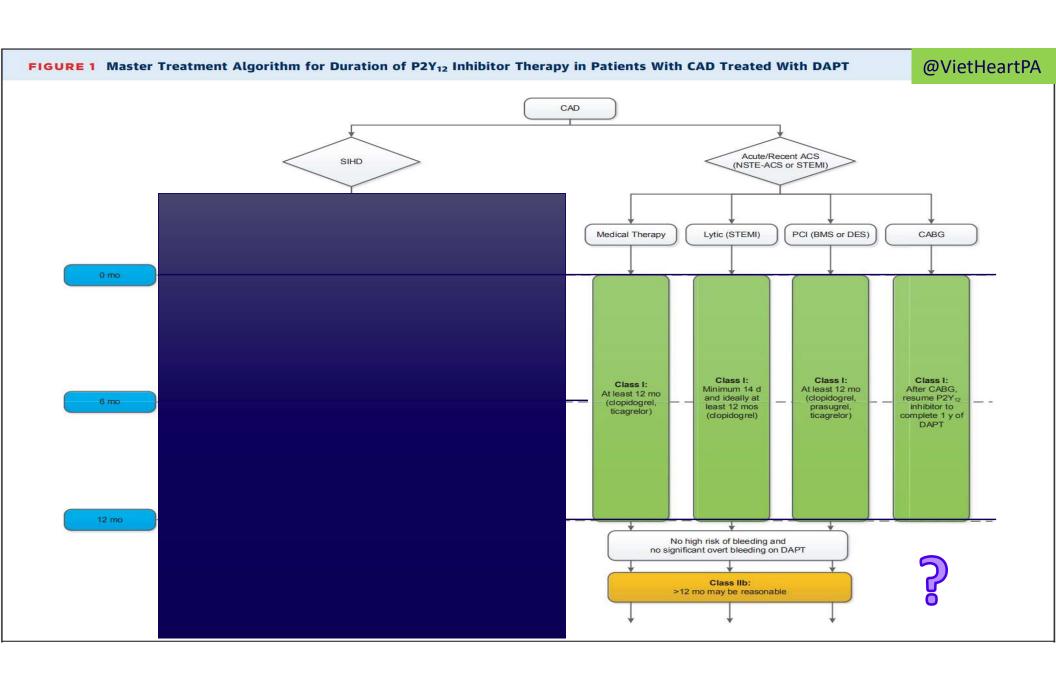
Antiplatelet(s): Plaque presence = potential for rupture or thrombus;

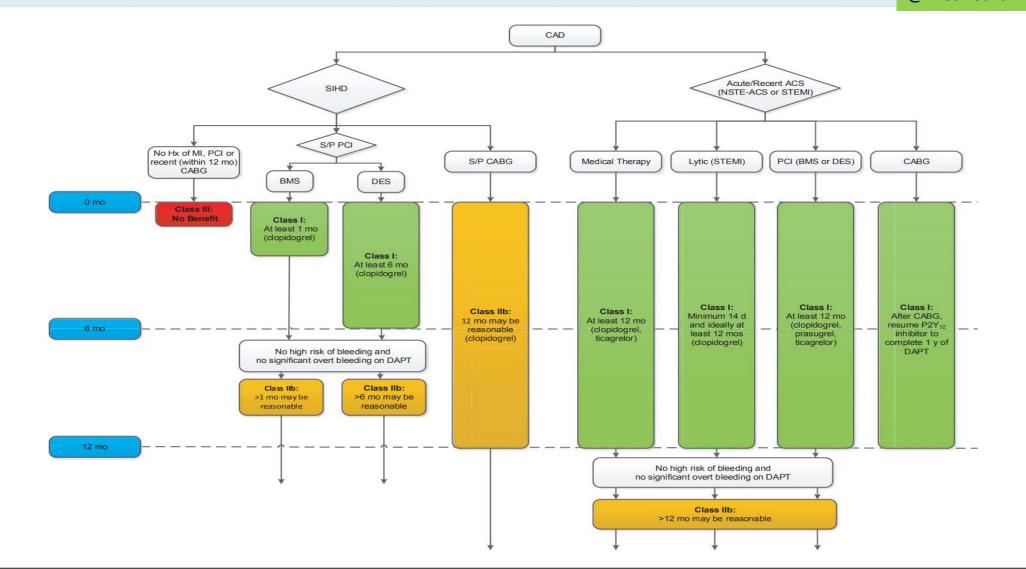

https://gfycat.com/gifs/search/myocardial

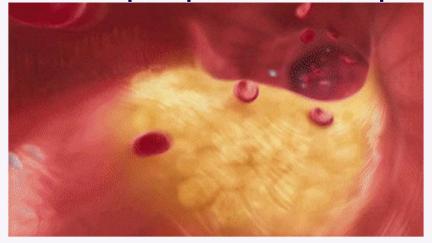





- 1. **Aspirin** 81 mg or 325 mg
- ADAPTABLE trial = either; 81 mg demonstrates same benefit, less bleeding
- 2. **P2y12 inhibitors**: Clopidogrel 75 mg, Prasugrel 10 mg, or Ticagrelor (90 mg po bid or 60 mg po bid).
- 3. **<u>Dual antiplatelet therapy (DAPT)</u>**: Both ASA + P2y12i


When to go to ASA or P2y12i alone?



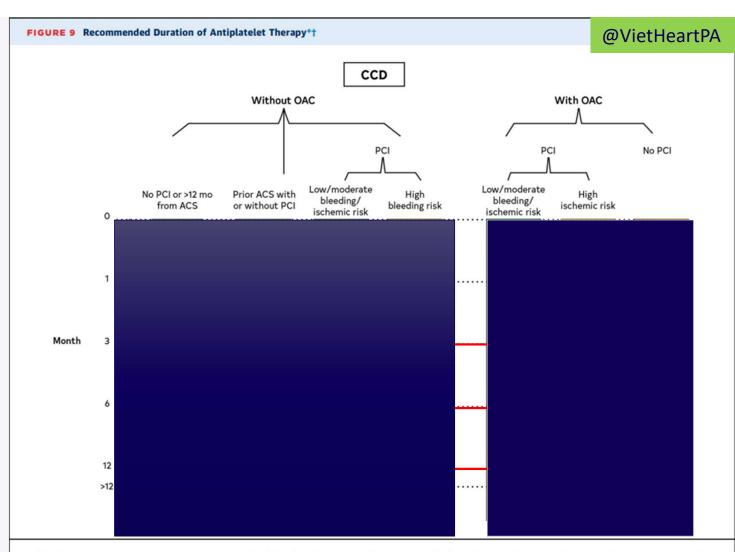


Antiplatelet(s):

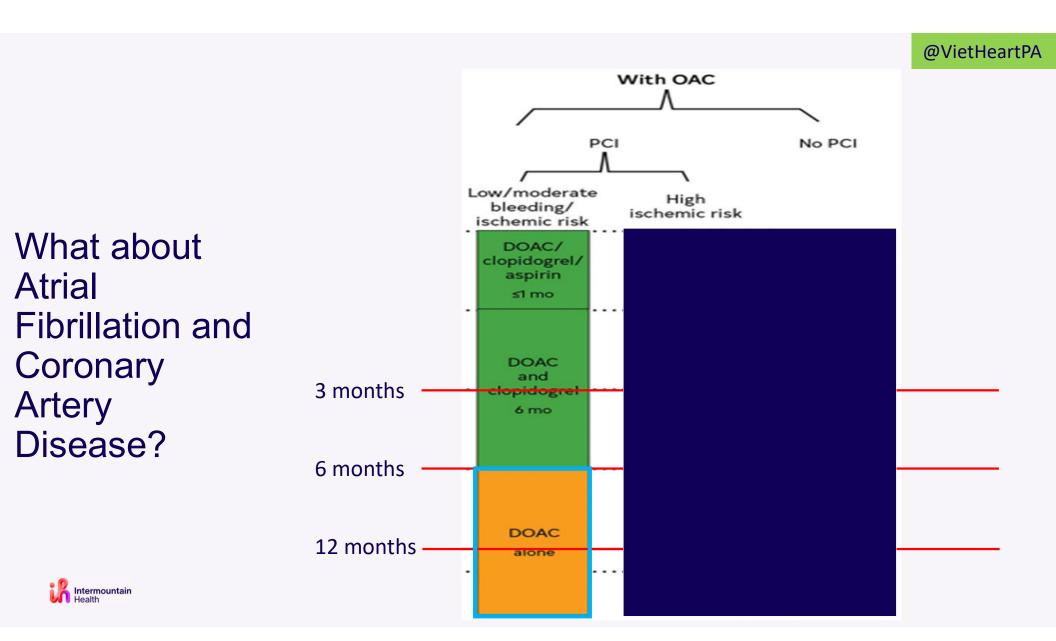
Plaque presence = potential for rupture or thrombus;

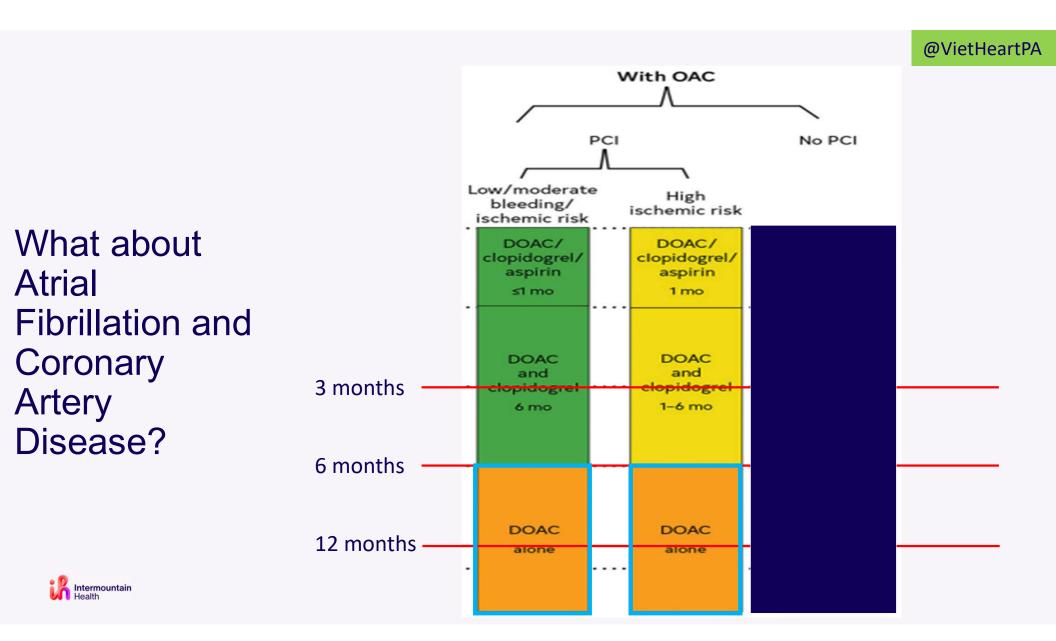
https://gfycat.com/gifs/search/myocardial

1. Aspirin 81 mg or 325 mg OR P2y12 inhibitors
Clopidogrel 75 mg, Prasugrel 10 mg, or Ticagrelor (90 mg po bid or 60 mg po bid).


As a single agent going forward? CAPRIE, 1996 study demonstrated cardiovascular benefit and less bleeding with clopidogrel over aspirin monotherapy.

Host-Exam 2022 affirmed data from CAPRIE trial of P2Y12i over aspirin.


Guidelines are still geared to ASA 81 mg monotherapy.


What about Atrial Fibrillation and Coronary Artery Disease?

ACS indicates acute coronary syndrome; ASA, aspirin; CCD, chronic coronary disease; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; DOAC, direct oral anticoagulant; MI, myocardial infarction; OAC, oral anticoagulants; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy. *Colors correspond to Class of Recommendation in Table 3. †This figure does not encompass all recommendations within this section.

@VietHeartPA With OAC PCI No PCI Low/moderate High bleeding/ ischemic risk ischemic risk What about DOAC/ DOAC/ clopidogrel/ clopidogrel/ aspirin aspirin **Atrial** ≤1 mo 1 mo Fibrillation and DOAC alone Coronary DOAC DOAC and and 3 months lopidogrel lopidogre **Artery** 6 mo 1-6 mo Disease? 6 months DOAC DOAC 12 months alone alone Intermountain

What about **Atrial** Fibrillation and Coronary **Artery** Disease?

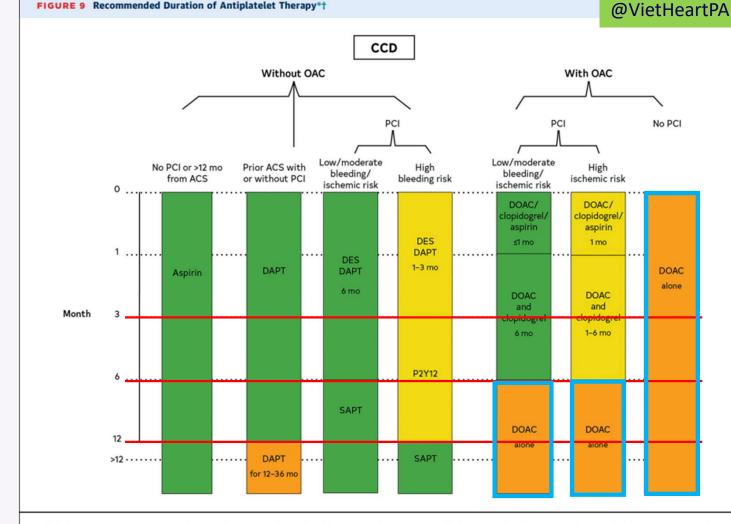


FIGURE 9 Recommended Duration of Antiplatelet Therapy*†

ACS indicates acute coronary syndrome; ASA, aspirin; CCD, chronic coronary disease; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; DOAC, direct oral anticoagulant; MI, myocardial infarction; OAC, oral anticoagulants; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy. *Colors correspond to Class of Recommendation in Table 3. †This figure does not encompass all recommendations within this section.

55-year-old man returns for annual follow-up.

PMHx: Had an MI at age 50, 2vCABG. Has Paroxysmal Afib.

FMHx: Mom had MI at age 55. Has one sister, A&W.

SocHx: Florist. Single. Lifetime non-smoker, drinks 1-2 beers on the weekends. Lifts weights 2-3 times a week at the gym.

MEDS: Clopidogrel 75 mg, rosuvastatin 40 mg, ezetimibe 10 mg, bi-weekly Repatha 140 mg/mL SC, metoprolol succinate 50 mg. SL NTG 0.4 mg PRN.

Vitals: BP 120/80, HR 55, SaO2 95%, T 98.7, Wt 200 Ht 5'9" BMI 29.5

LABS: TC 200, Trig 110, HDL 42, LDL 50. A1c 5.5%, Fasting Glucose 92 mg/dL

What are your recommendations?

Paroxysmal AF. Antithrombotic regimen?

- 1. Lifestyle modifications for health
- Initiate oral anticoagulant and stop P2y12 inhibitor.
- Watch for bleeding complications of bleeding (e.g., GI)

Hypertension, the pressure is on! BP goal <130/80 mmHg with GDMT*

https://gfycat.com/totaltiredfinch

1. GDMT

- Beta-blockers
- ACE Inhibitors or ARB
- Thiazides
- DHP/NDHP CCBs

Differences in HTN categories

JNC 7, JNC 8, and ACC/AHA 2017

2017 Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults

BP Classification (JNC 7 and ACC/AHA Guidelines)

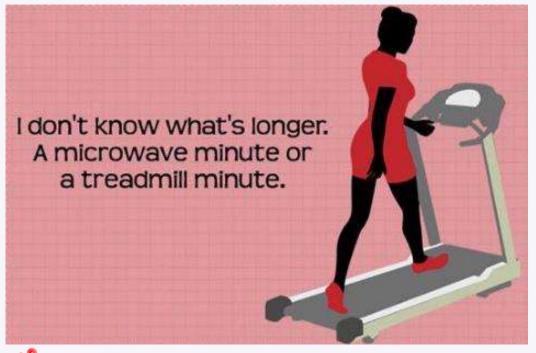
SBP		DBP	JNC 7	2017 ACC/AHA
<120	and	<80	Normal BP	Normal BP
120–129	and	<80	Prehypertension	Elevated BP
130–139	or	80–89	Prehypertension	Stage 1 hypertension
140–159	or	90-99	Stage 1 hypertension	Stage 2 hypertension
≥160	or	≥100	Stage 2 hypertension	Stage 2 hypertension

- Blood Pressure should be based on an average of ≥2 careful readings on ≥2 occasions
- Adults being treated with antihypertensive medication designated as having hypertension

HTN goals ACC/AHA 2017

Patient group	2017 ACC/AHA	
General	<130/80 mm Hg*	
Older patients	<130 mm Hg [‡]	
Diabetes	<130/80 mm Hg	
Chronic kidney disease	<130/80 mm Hg	

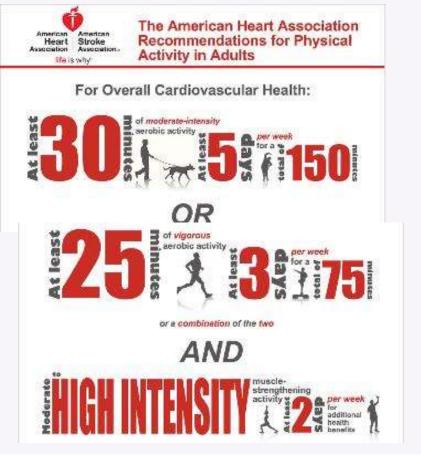
^{*}Ambulatory, community-dwelling, noninstitutionalized patients ≥65 years of age. Clinical judgment, patient preference, and a team-based approach to assess benefits and risks are reasonable for patients with a high burden of comorbidity and limited life expectancy.



^{*}Includes patients with atherosclerotic cardiovascular disease (ASCVD) or an estimated 10-year risk ≥10%, as well as patients needing primary prevention or those with 10-year ASCVD risk <10%.

[†]General population ≥60 years of age. Treatment does not need to be adjusted in patients ≥60 years who may have lower systolic BP (eg, <140 mm Hg) and are not experiencing adverse effects.

Lifestyle first, foremost, and always


• Its about the quality of life we live, not just how long we live it

Consider discussing lifestyle modifications not as "work" you do to become healthy. Rather as doing enjoyable activities by yourself or with others that happen to help keep you feeling healthy.

Physical Activity Recommendations in CAD patients

Consider **FITT** principle for ALL

Frequency, e.g., 1-2x/wk: add a day

Intensity, e.g., HR 90-110, talk easily: 10-20% increase

<u>Time</u>, e.g., 5-10 minutes: <u>10-20% increase</u>

Type, e.g., walking, chair exercises: 10-20% increase

Pharmacotherapeutics

Initiation: what to start with? First-line and/or condition driven

Regardless of underlying conditions, start with agents that have data for clinical outcomes benefits, i.e., have clinical trial data demonstrating reduction of CVD events, CKD progression, etc.

Primary agents used in the treatment of hypertension include:

- Thiazide diuretics (e.g., chlorthalidone, hydrochlorothiazide, indapamide, etc.)
- **ACE inhibitors*** (e.g., enalapril, lisinopril, benazepril, etc.)*
- **ARBs*** (e.g., candesartan, irbesartan, losartan, etc.)
- CCBs dihydropyridine (e.g., amlodipine, felodipine, nicardipine, etc.)
- CCBs nondihydropyridine (e.g., diltiazem and verapamil)
- **B-blockers*** (e.g., metoprolol succinate, carvedilol, bisoprolol)

*Class IB, preference towards ACEi/ARB and/or B-Blocker for HTN and/or MI/LV Dysfunction

Specific diseases and populations

- BP goals (<130/<80) for all. Individuals and disease presence may differ.
- Stable Ischemic Heart Disease GDMT ACEi/ARB +/- B-blockers
 - Angina Pectoris present DHP CCB thiazides, MRA
 - Post-ACS, LV dysfunction present B-blocker +/- ACEi/ARB; not present ACEi/ARB
 e.g., lisinopril 5-10 mg/valsartan 80-160 mg, metoprolol succinate 25-50 mg, amlodipine 5-10 mg
- HFrEF GDMT Bblockers, ACEi/ARB/ARNI, MRA. NDHP CCB NOT recommended.
- CKD albuminuria (≥300 mg/day or ≥300 mg/g creatinine by first morning void) is present, ACEi, ARB if ACEi not tolerated.
- DM All first line medications (e.g., thiazides, ACEi/ARB, DHP/NDHP CCBs) are reasonable.

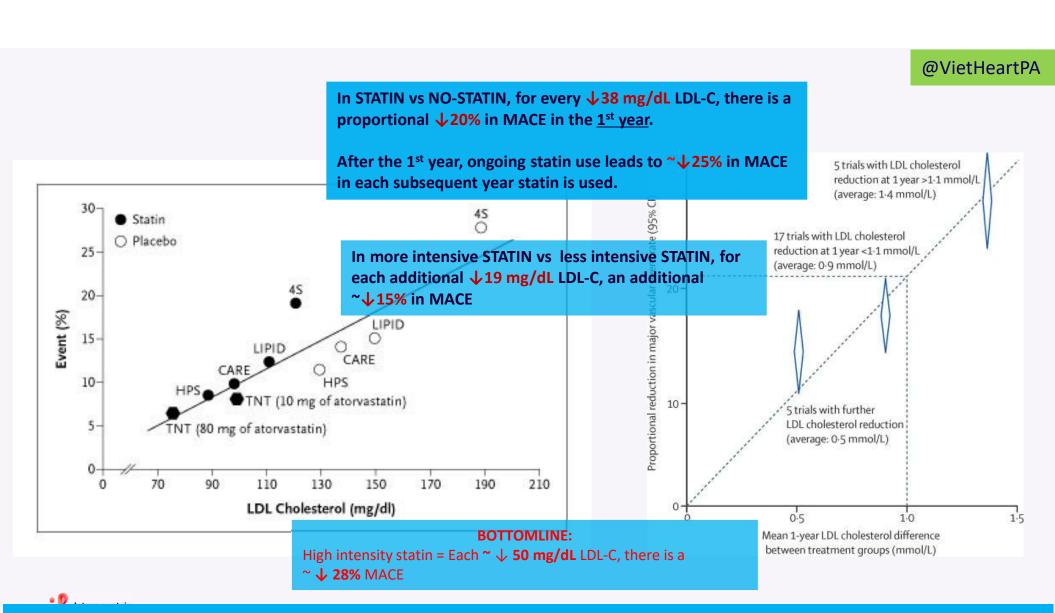
63-year-old woman presents for follow-up. She continues to have stable angina with climbing 2 flights of stairs.

PMHx: Occasional headaches OB/GYN: Post-menopausal since early 50's. She had an MI at age 60, 3vCABG, EF 55%.

FMHx: Parents have passed. 2 brothers, 1 with DMII.

SocHx: Medical Technologist, working part-time. Married with 2 adult children. Former smoker, no EtOH. Does not follow any specific physical activity regimen.

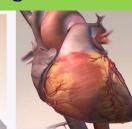
MEDS: Clopidogrel 75 mg, rosuvastatin 40 mg, ezetimibe 10 mg, valsartan 80 mg. SL NTG 0.4 mg PRN.


Vitals: **BP 138/80**, HR 80, SaO2 96%, T 98.9, Wt 155 Ht 5'5" BMI 25.8

LABS: TC 220, Trig 200, HDL 50, LDL 68. A1c 5.6%, Fasting Glucose 99 mg/dL

What are your recommendations?

Stage 1 - ≥ 130/ ≥ 80, ASCVD ≥ 10%


- 1. Lifestyle modifications for health
- Titrate BP medication: Increase valsartan to 160 mg and consider adding amlodipine 5 mg
- Reiterate importance of self measurement and keeping a home BP journal
- Reassess in 4-6 weeks in-person or by appropriate real-time communication (e.g., text, phone, or video-visit)

LaRosa JC. N Engl J Med 2005; 352:1425-1435; Collins R. Lancet 2016; 388: 2532-61

@VietHeartPA

Secondary Prevention STATIN...please.

MINIMUM 1st GOAL:

≥50% LDL-C Reduction from baseline.

High Intensity Statins (HIST)

- Atorvastatin 40, 80 mg
- Rosuvastatin 20, 40 mg

AHA/ACC 2018 2nd GOAL:

<u>LDL-C <70 mg/dL</u> OR non-HDL-C <100 mg/dL

Key TAKEAWAY in ASCVD:

- Statin FIRST
- 2. Reduce LDL-C by >50% from baseline.
- Add non-statins when LDL-C >70 or LDL >55
- 4. Check lipids 4-6 weeks after initiation or dose titration.

Updated AHA/ACC 2022:

ASCVD NOT at very high-risk LDL-C <70 mg/dL OR non-HDL-C <100 mg/dL ASCVD at Very HIGH RISK, LDL-C <55 mg/dL OR non-HDL-C <85 mg/dL

66-year-old man presents for follow-up. Returns for follow-up.

PMHx: Had an MI at 63, PCI w/2 stents to proximal LAD, EF 60%. Type II Diabetes

FMHx: 1 brother with DMII

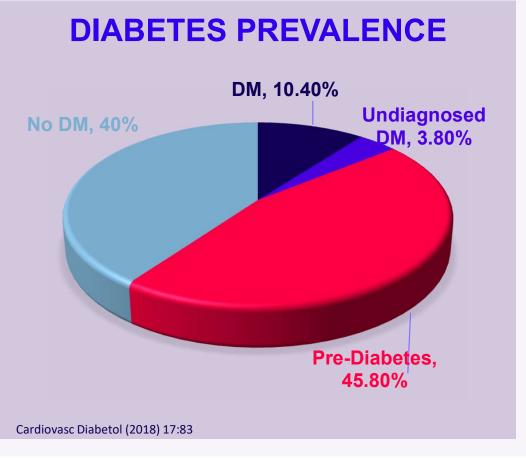
SocHx: Retired construction worker. Married with 1 adult child.

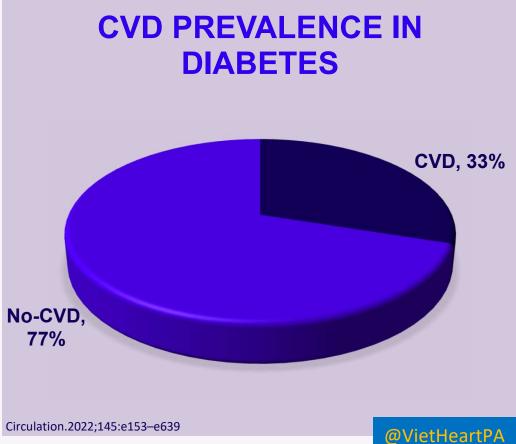
Former smoker, no EtOH. Walks daily for 40 minutes.

MEDS: Clopidogrel 75 mg, rosuvastatin 40 mg, ezetimibe 10 mg, valsartan HCT 160/12.5 mg, dapagliflozin 10 mg, semaglutide 1.7 mg/weekly. SL NTG 0.4 mg PRN.

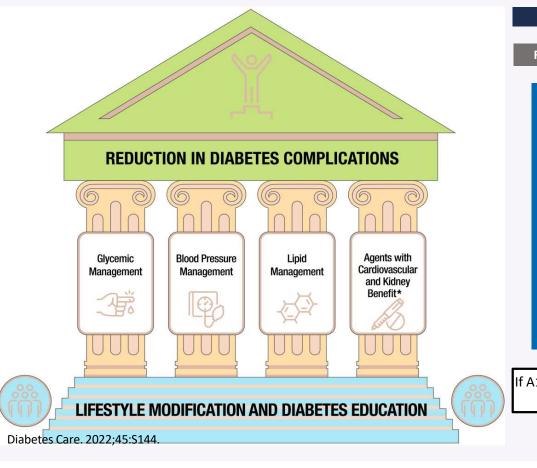
Vitals: BP 125/80, HR 80, SaO2 96%, T 98.9, Wt 155 Ht 5'5" BMI 25.8

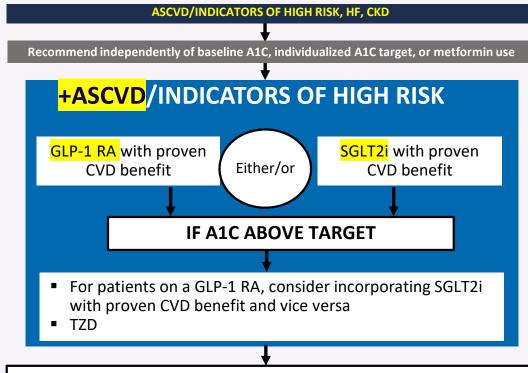
LABS: TC 220, Trig 200, HDL 50, LDL 88. A1c 6.7%


What are your recommendations?



Very High-Risk ASCVD, LDL-C <55 mg/dL


- 1. Lifestyle modifications for health
- Titrate lipid-lowering medication:
 Add Repatha or Praluent (50%
 expected decrease, 88-(88*0.5) = 44
 mg/dL).
- Reiterate the importance of selfmeasurement and keeping a home BP journal
- 4. Reassess in 4-6 weeks in-person or by appropriate real-time communication (e.g., text, phone, or video visit)


Diabetes Mellitus + CAD

Diabetes Mellitus + CAD

If A1C remains above target, consider treatment intensification based on comorbidities, patient-centered treatment factors, and management needs

@VietHeartPA

50-year-old woman presents for follow-up.

PMHx: DMII since age 30. HTN. MI at age 45; 3VCABG. EF 55%

FMHx: Mom with DMII. Dad with MI age 70. 3 brothers, 2 with DMII.

SocHx: Director of Nursing. Married with 1 adult child. Life-time nonsmoker, no EtOH. Five day/week gym class.

MEDS: Clopidogrel 75 mg, rosuvastatin 40 mg, valsartan 180 mg. SL NTG 0.4 mg PRN. Metformin 1000 mg 2 tabs QD, Lantus 30U daily, Insulin Aspart 15U with meals, glipizide 10 mg bid

Vitals: BP 140/80, HR 60, SaO2 96%, T 98.9, Wt. 200 Ht. 5'3" BMI 35.4

LABS: TC 170, Trig 145, HDL 45, LDL 65. A1c 7.5%, Fasting Glucose 190 mg/dL

What are your recommendations?

Very High-Risk ASCVD, goal LDL-C <55 mg/dL

- 1. Lifestyle modifications for health
- Add <u>ezetimibe 10 mg (20% expected to decrease, 65-(65*0.2) = 52)</u>
- 3. Add Amlodipine, Chlorthalidone, or Metoprolol Succinate
- Add SGLT2i and/or GLP1ra and remove glipizide, reducing basal and shortacting insulin.
- Reassess labs in 4-6 weeks, with BP check, glucose journal (CGM?), by appropriate real-time communication (e.g., in-person text, phone, or videovisit)

ASCVD Sequelae

Death, nonfatal MI or stroke, PAD, etc.

- Angina Optimal medical therapy or revascularization (PCI or CABG) + Optimal medical therapy
- Surveillance Ankle Brachial Index, Carotid and/or abdominal ultrasound, stress tests

Common Questions

Return to work post cardiac bypass – work, severity, and patient dependent.

Intimacy and intercourse, 2012 AHA Scientific Statement (https://www.ahajournals.org/doi/10.1161/cir.0b013e3182447787)

When to de-escalate therapies (age, cognitive, failure to thrive, terminal illnesses, etc.) – (Beers Criteria, https://geriatricscareonline.org/ProductAbstract/american-geriatrics-society-updated-beers-criteria/CL001/?param2=search)

Thank you!

