Fatty Liver- The Silent Epidemic

Practical Guidance on the Evaluation and Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)

> Kelsey Trull, PA-C Northeast Digestive Health Center

Concord, North Carolina

Disclosures

Declaration Statement: I have relevant relationships with ineligible companies to disclose within the past 24 months.

- Prime Therapeutics: Moderator, American College of Gastroenterology National Conference, October 2022
- Objective Health: Sub-investigator for multiple NASH trials, Concluded October 2023

Objectives

- Review updated recommendations on new nomenclature for steatotic liver disease
- Identify at risk populations for steatotic liver disease
- Discuss initial workup of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction-Associated Steatohepatitis (MASH) with special attention to noninvasive measures to assess for fibrosis
- Formulate a comprehensive treatment plan
- Summarize updated guidance on pharmacotherapy

New Nomenclature

New Name, Who Dis?

- In 2023, Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH) were renamed
- Multidisciplinary society elected to rename to MASLD* and MASH**
- Reasons for Change
 - "nonalcoholic" and "fatty liver" are stigmatizing
 - "metabolic" and "steatotic liver disease" better characterize the pathophysiology of the disease process
- Added diagnosis for combined MASLD with increased alcohol intake → MetALD

*Metabolic Dysfunction-Associated Steatotic Liver Disease

Renaming NAFLD to MASLD

* Approximately 17-20 drinks per week or Approximately 2.5-3 drinks per day

Defining MASLD

Patient must have hepatic steatosis identified on imaging or biopsy <u>AND</u> 1 Cardiometabolic risk factor

Cardiometabolic Risk Factors

BMI \geq 25 (23 Asia) or Waist Circumference \geq 94cm (M) 80cm (F)

Fasting glucose \geq 100mg/dL or 2 hour post load glucose \geq 140mg/dL or HbA1c \geq 5.7% or known Type 2 Diabetes with or without treatment

Blood Pressure \geq 130/85 or known HTN on specific antihypertensive drug treatment

Plasma triglycerides ≥150mg/dL or on lipid lowering treatment

Plasma HDL ≤ 40mg/dL (M) or 50mg/dL (F) or on lipid lowering treatment

Defining Steatotic Liver Disease

Lean "NAFLD"

- SLD with normal BMI
 - 4-11% of patients in US
- Risk Factors
 - Insulin resistance
 - Visceral adiposity
 - Low muscle mass

Global Burden of MASLD

- Global prevalence of MASLD between 30-40%
- Higher in Males 40% vs. Females 26%
- North America: 31%

~179,000,000 in N. America

Why the increase?

- Obesity (rates tripled since 1975)
- Type 2 Diabetes Mellitus
- Metabolic Syndrome

Younossi ZM, et al. Hepatology 2023; 77(4): 1335 Hamid O, et al. Annals of Hepatology 2022; 27(5)

Global Burden of MASLD

Why is this a problem?

- Leading cause of cirrhosis
- On trajectory to become leading cause of liver transplant in US
- Mortality secondary to MASLD Cirrhosis expected to increase 2-3 fold by 2030
- Significant economic burden
- Volume of MASLD patients requires multidisciplinary approach

Primary CareGastroenterologistHepatologistEndocrinologistObesity Medicine

Pathophysiology of MASLD

Two hit theory

- 1. Insulin Resistance
- 2. Inflammatory Cytokines

Akshintala D,et al. Nonalcoholic Fatty Liver Disease: The Overlooked Complication of Type 2 Diabetes. [Updated 2019 Jul 9]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544043/

MASLD Progression

Evolution of MASLD/MASH in Primary Care

>10,334 patients with MASLD/MASH followed over 7 years in primary care

- ➢ Patients referred to nutritionist- 24.2%
- ➢ Patients referred to a hepatologist-0.7%
- Patients referred to a hepatologist with advanced fibrosis or cirrhosis-12.8%
 - ><4% underwent follow up imaging or biopsies

Conclusion: More resources needed for primary care providers on MASLD

Gips JR, et al. Management of nonalcoholic fatty liver disease in a primary care setting. Presented at: The Liver Meeting; Nov. 10-14, 2023; Boston

Initial Evaluation

Clinical Care Pathway for the Risk Stratification and Management of Patients With Nonalcoholic Fatty Liver Disease

Fasiha Kanwal^{1,2}, Jay H. Shubrook³, Leon A. Adams⁴, Kim Pfotenhauer⁵, Vincent Wai-Sun Wong⁶, Eugene Wright⁷, Manal F. Abdelmalek⁷, Stephen A. Harrison⁸, Rohit Loomba⁹, Christos S. Mantzoros¹⁰, Elisabetta Bugianesi¹¹, Robert H. Eckel¹², Lee M. Kaplan^{10,13}, Hashem B. El-Serag^{1,2}, Kenneth Cusi^{14,15}

Kanwal F, et al. Gastroenterology 2021.

Noninvasive Testing for Liver Fibrosis

- Benefits
 - Easily available
 - Affordable
 - High Non-Predictive Value (NPV)
 - High correlation to clinical outcomes
 - Factors in Age
- FIB-4: Calculated value based on age, AST, ALT, and PLT

FIB-4 = $\frac{\text{Age (years)} \times \text{AST (U/L)}}{\text{Platelet Count (10⁹/L)} \times \sqrt{\text{ALT (U/L)}}}$

• Can be combined with other biomarker tests for increased accuracy

Noninvasive Testing for Liver Fibrosis

- Vibration Controlled Transient Elastography
 - <8.0 kPa excludes clinically significant fibrosis
- Shear Wave Elastography

Limitations of VCTE

- Dependent on operator experience
- Higher failure rates in obesity, narrow ICS, ascites
- False positives with heavy etoh use, nonfasting states, acute hepatitis
- Variable Reimbursement

MR Elastography

- Pros
 - Most accurate NIT for Fibrosis
 - Less failure rates in obesity
- Cons
 - Costly
 - Not readily available

Complex Serum Biomarker Panels

• ELF

 Decreased false positive rate when used in combination with Fib-4

- FibroSure
- Fibrometer VCTE

- ✓ VCTE/MRE superior to serum biomarker at detecting advanced fibrosis (F3+)
- ✓ Efficient at detecting low risk of fibrosis (high NPV)
- Reasonable alternative when elastography is unavailable

Liver Biopsy

- Remains gold standard for diagnosis (although rarely required)
- Required for diagnosis of steatohepatitis -MASH
- Useful when NITs are incongruent
- Helpful in ruling out other concomitant liver disease
- Cons
 - Cost
 - Risk of complications
 - Sampling error

John Doe, 52 yrs old, 5'10", BMI 41

- T2DM, HTN, CAD, Hypercholesterolemia
- Social etoh use 1-2 times per month
- T bili 0.8, ALP 110, ALT 55, AST 48, plt 199
- US shows hepatic steatosis

- A. Watch and Wait
- B. Calculate Fib-4
- C. Refer to hepatology/GI

<u>Fib-4</u>

Age (years) × AST (U/L)

FIB-4 =

Platelet Count (10^{\circ}/L) × $\sqrt{ALT (U/L)}$

1.69

- A. Order VCTE/Fibroscan
- B. Repeat Fib-4 in 1 year
- C. Order Fibrosure blood test

Kanwal F, et al. Gastroenterology 2021.

\rightarrow Patient referred for VCTE for LSM

VCTE Report

Measurements: 12 Probe size: XL Median kPa: 9.6 Median CAP: 345 IQR: 5%

- A. Order ELF blood test
- B. Repeat Fib-4 in 1 year
- C. Refer to GI/Hepatology

Kanwal F, et al. Gastroenterology 2021.

✓ John Doe was referred to a local GI/hepatologist for further workup, risk stratification and management of MASLD

✓ Reminder: All patients with persistently elevated transaminases should be referred to GI/hepatology regardless of risk

MASLD Comorbidities

Treating Disorders of Metabolism

 \rightarrow Leading cause of mortality in MASLD/MASH patients is cardiovascular disease

Treating Disorders of Metabolism

Cardiovascular Disease	MASLD	Type 2 Diabetes Mellitus	Chronic Kidney Disease	Heart Failure	
Weight Loss	Weight Loss	Weight Loss	Weight Loss	Weight Loss	
GLP1	GLP1	GLP1	GLP1	SGLT2i	
ARBs	?SGLT2i	SGLT2i	SGLT2i	ARBs	C
*Statins/Fibrates	THR-β agonists	ARBs	ARBs		ML.

AM WORKMAKES

✓ Consider statins in patients with CVD and MASLD. May decrease fibrosis and decreases overall mortality risk.

Torres-Pena, et al. Frontiers in Cardiovascular Medicine 2021.

Tackling MASLD

Treatment for Low Risk Fibrosis

Healthy Diet

- Mediterranean diet, Intermittent Fasting, Low Carbohydrate, Caloric Restriction are comparable
- Mediterranean diet may be most sustainable with CV benefit
- Nutrition referral
- Avoidance of fructose containing food and drink
- Minimize ETOH use
- Coffee (3 cups daily) may be beneficial in the absence of contraindications

	LOW RISK FIB-4 < 1.3 or LSM < 8 kPa or liver biopsy F0-F1
	Management by PCP, dietician, endocrinologist, cardiologist, others
Lifestyle intervention ²	Yes
Weight loss recommended if overweight or obese ³	Yes May benefit from structured weight loss programs, anti-obesity medications, bariatric surgery
Pharmacotherapy for NASH	Not recommended
CVD risk reduction ⁸	Yes
Diabetes care	Standard of care

Treatment for Low Risk Fibrosis

Exercise

- Moderate exercise recommended for 150-200 min/week
- Combination of cardiovascular and resistance training is superior to cardiovascular exercise alone

Weight Loss

- 10% weight loss target for MASLD
- Long term approach
- Consider obesity medications or referral for bariatric surgery in patients with comorbidities and qualifying BMI.

Minimize Alcohol Use

Smoking Cessation

	LOW RISK FIB-4 < 1.3 or LSM < 8 kPa or liver biopsy F0-F1	
	Management by PCP, dietician, endocrinologist, cardiologist, others	
Lifestyle intervention ²	Yes	
Weight loss recommended if overweight or obese ³	Yes May benefit from structured weight loss programs, anti-obesity medications, bariatric surgery	
Pharmacotherapy for NASH	Not recommended	
CVD risk reduction ⁸	Yes	
Diabetes care	Standard of care	

Kanwal F, et al. Gastroenterology 2021.

Bariatric Surgery and MASLD/MASH

Lassailly G, et al. Gastroenterology 2020; 159:1290.

Available MASLD Treatments

Rinella ME, et al. Hepatology 2023; Bril F, et al. Clin Gastro Hep 2018; Cusi K, et al. Ann Intern Med 2016; Sanyal A, et al. NEJM 2010; Vilar-Gomez E, et al. Hepatology 2020; Armstrong MJ, et al. Lancet 2016; Newsome PN, et al. NEJM 2021; Loomba R, et al. Lancet Gastro Hep 2023; Jastreboff AM, et al; NEJM 2022; Kahl S, et al. Diabetes Care 2020

Medication	Study Patients	FDA indication	Benefits	Side Effects
Vitamin E 800 IU daily	MASH w/o T2DM or Cirrhosis	None	 Improves steatosis Lower risk of decompensation No definite fibrosis regression 	Bleeding, hemorrhagic CVA, potential increase in prostate cancer risk
Pioglitazone	MASH +/- T2DM	T2DM	 Improves steatosis NASH improvement Possible Fibrosis improvement Improved insulin sensitivity 	Weight gain, bone loss, heart failure exacerbation
SGLT2i	MASLD and T2DM	T2DM	 Improved steatosis Better renal outcomes May improve insulin sensitivity 	Urinary infections, volume depletion, bone loss
Semaglutide 0.4mg sc daily, 0.25-2.4mg sq weekly	MASH w/o cirrhosis	T2DM Obesity	 Improves steatosis NASH resolution Improved insulin sensitivity Weight loss No definite fibrosis regression 	Multiple GI side effects, gallstones, pancreatitis
Tirzepetide Sq weekly	MASLD +/- obesity and T2DM	T2DM Obesity	 Improved steatosis Improved insulin sensitivity Weight loss 	Multiple GI side effects, gallstones, pancreatitis
Resmitirom	MASH with biopsy proven F2/F3 fibrosis	MASLD/MASH with F2/F3 fibrosis	 Resolution of steatosis Regression of fibrosis Improved LDL and TRG 	Diarrhea, Nausea, Arthralgia

Statins

- Utilized in patients with MASLD and existing dyslipidemia and/or CAD
- Moderate to high intensity statins indicated
- Decreases risk of cardiovascular morbidity and mortality
- Some studies suggest decreased risk of hepatic decompensation and HCC risk
- Safe in advanced fibrosis

AASLD Guidance recommendation: Statins are safe and recommended for CVD risk reduction in patients with MASLD across the disease spectrum, including compensated cirrhosis.

Vitamin E

- Indicated in Biopsy proven MASH
- 800 IU daily
- Improvement in steatosis
- No proven regression of fibrosis
- Increased rate of transplant free survival
- Lower risk of hepatic decompensation
- Caution: Patients with Type 2 DM, may increase risk of prostate cancer
- May increase risk of bleeding and hemorrhagic CVA, interacts with some blood thinners

SGLT2i

- Reduced serum AST and ALT after 3 months of treatment
- Decreased hepatic steatosis
- Decreased FIB-4 and APRI scores after 12 months of treatment
- May result in weight loss
- Improved cardiac and renal risk factors

Xu R, et al. *Front Biosci*. 2023, 28(7), 134. Yanai H, et al. *Int J Mol Sci*. 2023.

GLP-1 and dual GIP/GLP-1 Agonists

- Approved for use in T2DM and Obesity
 - Liraglutide, Semaglutide, and Tirzepatide approved for Obesity
- Associated MASLD resolution
- Improved steatosis
- Increased insulin sensitivity
- Extremely favorable weight loss profile
- Data inconsistent on fibrosis regression
- Concerns: Multiple GI side effects, gallstones, pancreatitis

Retatrutide

- Triple mechanism-GIP/GLP-1/Glucagon receptor agonist
- Phase 2 Obesity and T2DM trial
 - Up to 24% weight loss observed
 - Subset of patients studied with MASLD
 - 80-90% achieved resolution of hepatic steatosis with 12mg dose

Pioglitazone

- PPAR-Peroxisome proliferator-activated receptor agonist
 - Nuclear receptors that decrease hepatic triglyceride accumulation, increases glucose and lipid metabolism
- In patients with Type 2 DM and MASH:
 - Improves steatosis and MASH
 - Possible fibrosis improvement
 - Improved insulin sensitivity

Concerns: Weight gain, bone loss, heart failure exacerbation, may increase bladder cancer risk

PPAR in development

Lanifibranor (pan-PPAR)

Saroglitazar (PPAR α/γ)

THR-β agonists

- Thyroid hormone through activation of the THR-β in hepatocytes, plays an important role in liver function with impacts on serum cholesterol, triglycerides, and buildup of fat in the liver
- Thyroxine Beta Receptor Agonists
 - Decrease hepatic fat
 - \circ Improve MASH
 - Decrease LDL-C
 - Decrease triglycerides
- In Development: Resmitirom

Resmitirom

- First FDA approved treatment for MASLD
- Approved for stage 2 and stage 3 fibrosis
- No biopsy required
- Met primary endpoints
 - $\circ~$ Resolution of steatohepatitis and no worsening of fibrosis
 - At least 1 stage of improvement in fibrosis without worsening of steatohepatitis
- Weight-based Dosing: 80mg (<220lbs), 100mg (>220lbs) tablets
- Common side effects: Diarrhea, nausea, pruritis, vomiting
- Drug interactions: moderate to strong CYP2CB inhibitors

Resmitirom

Harrison SA, et al. NEJM 2024

Bile Acids in MASLD

- Farnesoid X receptor is a bile acid sensor that helps regulate bile acid metabolism and lipid homeostasis
- Decreases intracellular fatty acid levels
- Farnesoid X Receptor Agonists
 - Obeticholic Acid ← Development stopped
 - Multiple 2nd generation FXR Agonists in development
- FGF21 analogue- Efruxifermin, Pegozafermin
- FGF19 analogue- Aldafermin

*Efruxifermin data released at AASLD

Special Population: Cirrhosis

- All patients with MASLD/MASH Cirrhosis should be referred to GI/Hepatologist
- More research needed on targeted MASH therapies for cirrhosis
- Presence of T2DM increases risk of HCC 2-fold in cirrhosis
- Presence of metabolic syndrome increases risk of HCC 5-fold in cirrhosis
- MASLD associated HCC: increased risk of mortality in comparison to other causes of HCC

John Doe, 52 yrs old, 5'10", BMI 41

- T2DM, HTN, CAD, Hypertriglyceridemia
- Social etoh use 1-2 times per month
- T bili 0.8, ALP 110, ALT 55, AST 48, plt 199
- US shows hepatic steatosis
- FIB-4 1.69, VCTE 9.6 kPa
- Referred to hepatologist
- Patient expressed no interest in bariatric surgery referral

John Doe, 52 yrs old, 5'10", BMI 41

- T2DM: Tirzepatide 7.5mg (higher dose trialed but patient tolerated poorly due to GI side effects)
- Hypercholesterolemia: atorvastatin titrated to 40mg
- Referred to nutritionist
- Exercise program
- Recommended initial 10% weight loss goal

Take Home Points

Psychology

Rinella M, et al. Hepatology 2023

Take Home Points

- The global burden of MASLD is enormous
- Majority of patients with MASLD will receive care outside of GI/hepatology
- Non-invasive tests can help identify patients at risk (FIB-4)
- Refer patients to GI/Hepatology who are at risk for advanced fibrosis
- Lifestyle modifications remain cornerstone of MASLD Care
- Consider use of approved medications in patients with comorbidities (GLP-1, SGLT2i, Statins)
- New treatments are in development- stay tuned regarding FDA decisions for treatments with MASLD indication

Thank You

References

- DiStefano, J. K., & Gerhard, G. S. (2022). NAFLD in normal weight individuals. *Diabetology & amp; Metabolic Syndrome, 14*(1). https://doi.org/10.1186/s13098-022-00814-z
- Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., & Sanyal, A. J. (2018). Mechanisms of NAFLD development and therapeutic strategies. *Nature Medicine*, *24*(7), 908–922. https://doi.org/10.1038/s41591-018-0104-9
- Hamid, O., Eltelbany, A., Mohammed, A., Alsabbagh Alchirazi, K., Trakroo, S., & Asaad, I. (2022). The epidemiology of non-alcoholic steatohepatitis (NASH) in the United States between 2010-2020: A population-based study. *Annals of Hepatology*, *27*(5), 100727. https://doi.org/10.1016/j.aohep.2022.100727
- Harrison, S. A., Bedossa, P., Guy, C. D., Schattenberg, J. M., Loomba, R., Taub, R., Labriola, D., Moussa, S. E., Neff, G. W., Rinella, M. E., Anstee, Q. M., Abdelmalek, M. F., Younossi, Z., Baum, S. J., Francque, S., Charlton, M. R., Newsome, P. N., Lanthier, N., Schiefke, I., ... Ratziu, V. (2024). A phase 3, randomized, controlled trial of Resmetirom in Nash with liver fibrosis. *New England Journal of Medicine*, 390(6), 497–509. https://doi.org/10.1056/nejmoa2309000
- Harrison, S. A., Frias, J. P., Neff, G., Abrams, G. A., Lucas, K. J., Sanchez, W., Gogia, S., Sheikh, M. Y., Behling, C., Bedossa, P., Shao, L., Chan, D., Fong, E., de Temple, B., Shringarpure, R., Tillman, E. J., Rolph, T., Cheng, A., & Yale, K. (2023). Safety and efficacy of once-weekly efruxifermin versus placebo in non-alcoholic steatohepatitis (harmony): A multicentre, randomised, double-blind, placebo-controlled, phase 2B trial. *The Lancet Gastroenterology & amp; Hepatology*, 8(12), 1080–1093. https://doi.org/10.1016/s2468-1253(23)00272-8
- Kanwal, F., Shubrook, J. H., Adams, L. A., Pfotenhauer, K., Wai-Sun Wong, V., Wright, E., Abdelmalek, M. F., Harrison, S. A., Loomba, R., Mantzoros, C. S., Bugianesi, E., Eckel, R. H., Kaplan, L. M., El-Serag, H. B., & Cusi, K. (2021). Clinical care pathway for the risk stratification and management of patients with nonalcoholic fatty liver disease. *Gastroenterology*, *161*(5), 1657–1669. https://doi.org/10.1053/j.gastro.2021.07.049
- Lassailly, G., Caiazzo, R., Ntandja-Wandji, L.-C., Gnemmi, V., Baud, G., Verkindt, H., Ningarhari, M., Louvet, A., Leteurtre, E., Raverdy, V., Dharancy, S., Pattou, F., & Mathurin, P. (2020). Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. *Gastroenterology*, 159(4). https://doi.org/10.1053/j.gastro.2020.06.006

References

- Muthiah, M. D., Cheng Han, N., & Sanyal, A. J. (2021). A clinical overview of non-alcoholic fatty liver disease: A guide to diagnosis, the clinical features, and complications—what the non-specialist needs to know. *Diabetes, Obesity and Metabolism, 24*(S2), 3–14. https://doi.org/10.1111/dom.14521
- Nogami, A., Yoneda, M., Iwaki, M., Kobayashi, T., Kessoku, T., Honda, Y., Ogawa, Y., Imajo, K., Higurashi, T., Hosono, K., Kirikoshi, H., Saito, S., & Nakajima, A. (2022). Diagnostic comparison of vibration-controlled transient elastography and MRI techniques in overweight and obese patients with NAFLD. *Scientific Reports*, *12*(1). https://doi.org/10.1038/s41598-022-25843-6
- Rinella, M. E., Neuschwander-Tetri, B. A., Siddiqui, M. S., Abdelmalek, M. F., Caldwell, S., Barb, D., Kleiner, D. E., & Loomba, R. (2023).
 Aasld Practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. *Hepatology*, 77(5), 1797–1835. https://doi.org/10.1097/hep.00000000000323
- Torres-Peña, J. D., Martín-Piedra, L., & Fuentes-Jiménez, F. (2021). Statins in non-alcoholic steatohepatitis. *Frontiers in Cardiovascular Medicine*, 8. https://doi.org/10.3389/fcvm.2021.777131
- Vidal-Cevallos, P., Murúa-Beltrán Gall, S., Uribe, M., & Chávez-Tapia, N. C. (2023). Understanding the relationship between nonalcoholic fatty liver disease and thyroid disease. *International Journal of Molecular Sciences*, *24*(19), 14605. https://doi.org/10.3390/ijms241914605
- Xu, R., Lian, D., Xie, Y., Chen, Z., Wang, Y., Mu, L., Wang, Y., & Zhang, B. (2023). SGLT-2 inhibitors for non-alcoholic fatty liver disease: A Review. *Frontiers in Bioscience-Landmark*, 28(7), 134. https://doi.org/10.31083/j.fbl2807134
- Yanai, H., Hakoshima, M., Adachi, H., & Katsuyama, H. (2021). Multi-organ protective effects of sodium glucose cotransporter 2 inhibitors. *International Journal of Molecular Sciences*, 22(9), 4416. https://doi.org/10.3390/ijms22094416
- Younossi, Z. M., Golabi, P., Paik, J. M., Henry, A., Van Dongen, C., & Henry, L. (2023). The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. *Hepatology*, 77(4), 1335–1347. https://doi.org/10.1097/hep.000000000000004