UPDATES IN CARDIOGENIC SHOCK **MECHANICAL CIRCULATORY SUPPORT**

Andrew McDowell

MMS, PA-C, NRP, FAAPA

INTRODUCTION TO CARDIOGENIC SHOCK

Causes

- Acute myocardial infarction
- Advanced heart failure
- Pulmonary embolism
- Myocarditis
- Drug toxicity
- Takotsubo cardiomyopathy

- Noninvasive hemodynamics
- End-organ perfusion
- Invasive hemodynamics
- Surrogate markers
- Shock index

- Reperfusion therapy
- Vasopressors/Inotropes
- ECMO/MCS
- Supportive care

RECOGNIZING CARDIOGENIC SHOCK

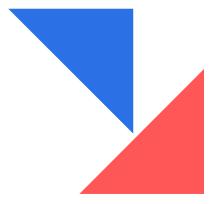
SCAI Stages of Cardiogenic Shock

A patient with risk factors for cardiogenic shock who is not currently experiencing signs or symptoms. For example, large acute myocardial infarction, prior infarction, acute and/or acute on chronic heart failure

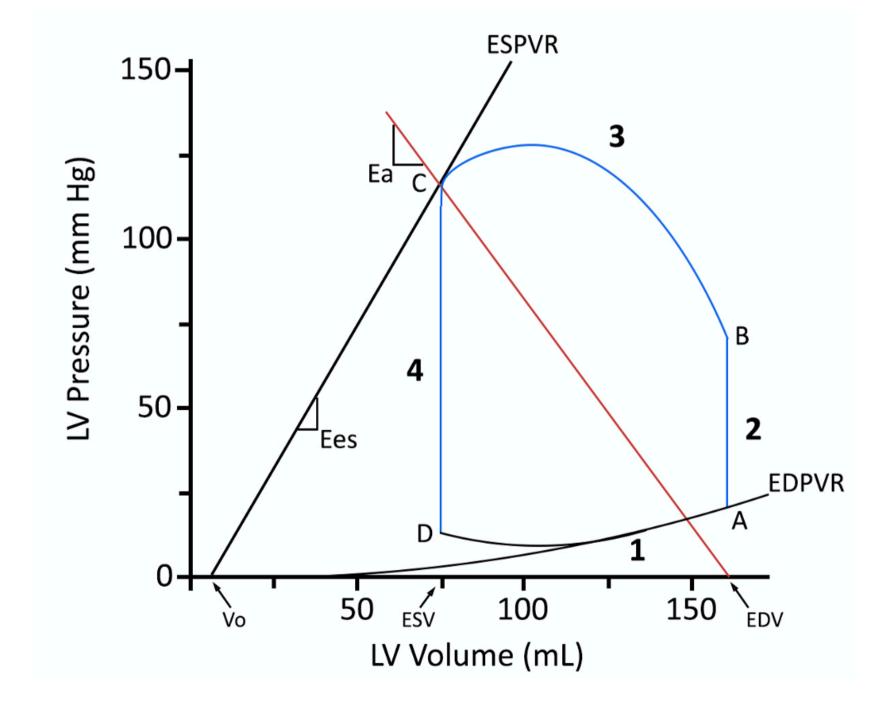
RECOGNIZING CARDIOGENIC SHOCK

SCAI SHOCK STAGE	PHYSICAL EXAM	BIOCHEMICAL MARKERS	HE
A	Normal JVP Lung souds clear Strong distal pulses Normal mentation	Normal renal function Normal lactic acid	Normotens If
B	Elevated JVP Rales in lung fields Strong distal pulses Normal mentation	Normal lactate Minimal renal function impairment Elevated BNP	SBP < 90 OF If
C	Ashen, mottled, dusky Volume overload Extensive Rlaes Killip class 3 or 4 BiPap or mechanical ventilation Acute alteration in mental status	Lactate ≥ 2 Creatinine doubling OR >50% drop in GFR Increased LFTs Elevated BNP Urine Output <30ml/h	Drugs/dev Car
D	Any of Stage C	Any of stage C AND deteriorating	Requiring mechanic
Ε	Near pulselessness Cardiac collapse Mechanical ventilation Defibrillator used	Lactate ≥ 5 pH ≤ 7.2	No S PE Hypotens

EMODYNAMICS


nsive (SBP ≥ 100 or normal for pt). If hemodynamics done: Cardiac index ≥ 2.5 CVP < 10 PA Sat ≥ 65%

OR MAP < 60 OR > 30 mmHg drop Pulse ≥ 100 If hemodynamics done: Cardiac index ≥ 2.2 PA Sat ≥ 65%


evice used to maintain BP above stage B values. Cardiac index < 2.2 PCWP > 15 RAP/PCWP ≥ 0.8 PAPI < 1.85 ardiac Power Output ≤ 0.6

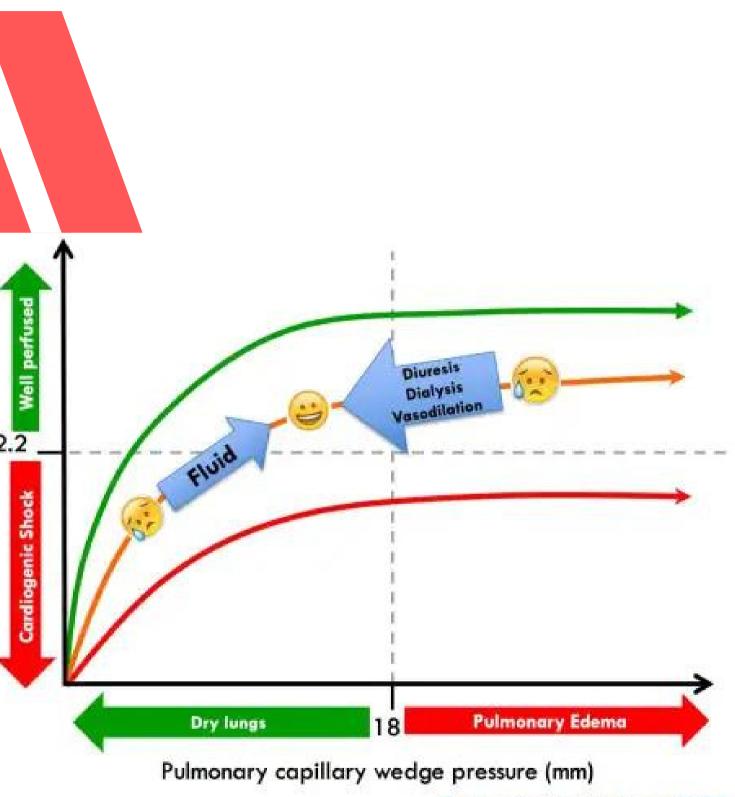
Any of stage C AND ng multiple pressors OR addition of nical circulatory support devices to maintain perfusion

o SBP without resuscitation PEA or Refractory VT/VF ension despite maximal support

RECOGNIZING CARDIOGENIC SHOCK

INITIAL TREATMENT STRATEGIES

Optimize Oxygen Delivery


Airway management, IVF to optimize preload, early vasopressors, inotropes as indicated, PRBC transfusion

Early Revascularization

ECA with PCI or CABG aims to restore coronary blood flow and salvage viable myocardium, thereby improving cardiac function and hemodynamics

Provide Supportive Care

Monitor vital signs and evidence of end-organ perfusion closely. Consider invasive hemodynamic monitoring and frequent echocardiograms.

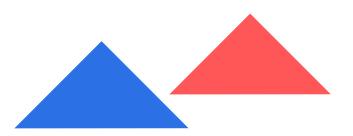
The Internet Book of Critical Care, emerillerg/IBCC/chil

PHARMACOLOGICAL INTERVENTIONS

Rough properties of various vasopressors

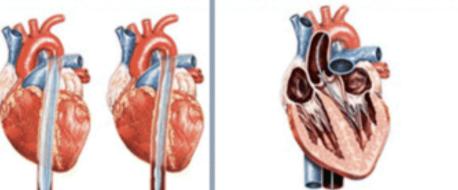
4.55	In the second second second second	THE REAL PROPERTY AND ADDRESS	Conceptibility and	Surveyore and survey of the	ous vaso	The state of the state of the	1 martine and 1	The strength of the
Drug Typical dose range	Target	Effect on - Heart rate - Inotropy - Ectopy	Effect on systemic vascular resistance	Effect on cardiac output	Effect on blood pressure	Effect on pulmonary vascular resistance	Main uses	Safe for peripheral use?
			Inodila	tors				
Dobutamine 2-20 mcg/kg/min	αββββ	价价价	Ų	价价价	Variable	₩	Cardiogenic shock	
Milrinone 0.375-0.75 mcg/kg/min	cAMP	ሰሰሰ	ΨU	价价价	Variable	ΨŲ	Cardiogenic shock	
2-10 mcg/min	ββββ	ሰበበበበ	Ų	价价价	Variable		Bradycardia	Yes
			Pure Vasop	oressors				
Vasopressin 0.01-0.06 U/min	V1 & V2	₽	ሰበበ	⇔/∜	ሰበበ	Ų	Distributive shock, Pulmonary HTN	No.
Phenylephrine 40-180 mcg/min	αααα	₽	价价价	Variable	价价价	们们	Distributive shock	Yes
			InoPres	sors				
Norepinephrine 0-40 mcg/min*	αααβ	î	价价价	⇔/î	îΠ	⇔	Shock (most types)	Yes, for short period with monitoring
Epinephrine 0-20 mcg/min*	αβββ	ሰበበ	î	ሰበበ	îΠ		Bradycardia, cardiogenic shock, sepsis, anaphylaxis	Yes
Dopamine, low 1-4 mcg/kg/min	Dopa-R	⇔	Ų	î	Ų			Probably not
Dopamine, medium 4-10 mcg/kg/min	αβββD	î	Variable	俞介	Variable		Zombie apocalypse (absence of better agents).	
Dopamine, high 10-20 mcg/kg/min	αααβD	氜	俞介	î	111	î		

*Listed ranges are typically used doses in the United States, but there is no true "maximal" dose. Some countries may tend to use higher doses than others. At very high doses, pressors may lose some receptor specificity. The best dose is the dose required to keep the patient alive – in some cases very high norepinephrine or epinephrine doses may be needed. -The Internet Book of Critical Care, by @PulmCrit

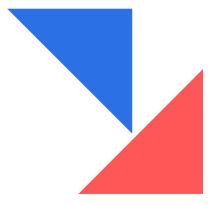


MAKE SWANS GREAT AGAIN

Pulmonary artery catheter utilization has fallen out of favor in many ICUs that do not routinely care for patients in cardiogenic shock.

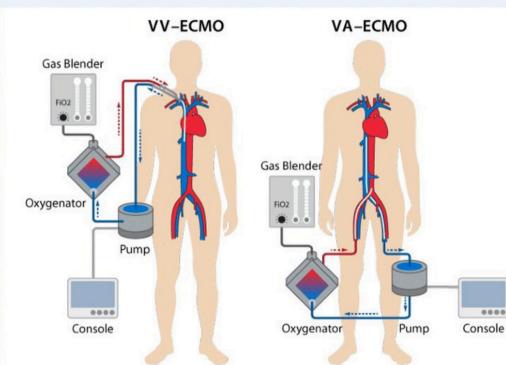

However, several recent observational and retrospective meta-analyses present compelling, albeit biased, data that PACs reduce mortality in cardiogenic shock.

What are some reasons that PACs might reduce mortality in cardiogenic shock but not other forms of shock?



MCS DEVICES

	IABP	IMPELLA	TANDEMHEART	VA-ECMO
Cardiac Flow	0.3-0.5 L/ min	1-5L/ min (Impella 2.5, Impella CP, Impella 5)	2.5-5 L/ min	3-7 L-min
Mechanism	Aorta	$LV \rightarrow AO$	$LA \rightarrow AO$	$RA \rightarrow AO$
Maximum implant days	Weeks	7 days	14 days	Weeks
Sheath size	7-8 Fr	13-14 Fr Impella 5.0 - 21 Fr	15-17 Fr Arterial 21 Fr Venous	14-16 Fr Arterial 18-21 Fr Venous
Femoral Artery Size	>4 mm	Impella 2.5 & CP - 5-5.5 mm Impella 5 - 8 mm	8 mm	8 mm
Cardiac synchrony or stable rhythm	Yes	No	No	No
Afterload	Ļ	Ļ	↑	↑ ↑↑
MAP	î	^	† †	↑ ↑
Cardiac Flow	Ŷ	^	^	$\uparrow \uparrow$
Cardiac Power	Ť	↑ ↑	† †	↑ ↑
LVEDP	Ļ	$\downarrow\downarrow$	$\downarrow\downarrow$	\leftrightarrow
PCWP	Ļ	$\downarrow\downarrow$	$\downarrow\downarrow$	\leftrightarrow
LV Preload		$\downarrow\downarrow$	$\downarrow\downarrow$	\downarrow
Coronary Perfusion	Ť	1		
Myocardial oxygen demand	\downarrow	$\downarrow\downarrow$	$\leftrightarrow \downarrow$	\leftrightarrow


ECMO IN CARDIOGENIC SHOCK

EXTRA-CORPOREAL MEMBRANE **OXYGENATION** (ECMO)

Mode of cardiopulmonary support used to treat pulmonary and/or cardiovascular failure with an external artificial circuit

ECMO GOALS

- · Maintain adequate tissue oxygenation to allow recovery from potentially reversible cardiopulmonary failure
- · Adjust ventilator settings with very low tidal volumes, allowing for lung rest, minimizing further ventilator-induced lung injury
- · ECMO is a bridge, not a destination

OXYGEN DELIVERY

- From both lungs & oxygenator
- Assess perfusion (eg, NIRS, SVO₂, lactate)

REST SETTINGS

- · If ventilated, frequently placed on low "rest" settings with moderate PEEP
- · Bronchoscopy may be needed for plugging

ANTICOAGULATION

- To reduce risk of thromboembolism in circuit
- Done per institutional protocol

ELECTROLYTE REPLACEMENT

Particularly Ca+ due to citrate binding

HOW DOES IT WORK?

- Veno-Arterial (VA)
 - Supports heart and lungs (complete cardiopulmonary support)
 - Blood drains venous system
 - Blood returns arterial system

Veno-Venous (VV)

- Supports lungs (pulmonary support only)
- Blood drains venous system
- Blood returns venous system
- E-CPR
 - Rapid deployment of VA-ECMO when CPR is unsuccessful in achieving sustained return of spontaneous circulation

PARAMETERS

- Flow (mL/kg/min)
 - · Dial in RPMs and flow depends on resistance in patient & circuit
 - Generally set between 4-6 L/min (100-150 mL/kg/min in children)
 - On VA-ECMO flow supports cardiac output
 - On VV-ECMO flow supports oxygenation
- Sweep (L/min)
 - Sweep gas flow determines PCO₂ clearance (ie, ventilation) for both VV- & VA-ECMO

POTENTIAL COMPLICATIONS

MECHANICAL ISSUES

- · Circuit thrombus or hemolysis · Differences between pre- and postpressures across oxygenator can provide
- early warning about potential thrombus Oxygenator failure or thrombus
- Pump failure or air emboli rare

INFECTION & SYSTEMIC INFLAMMATORY SYNDROME

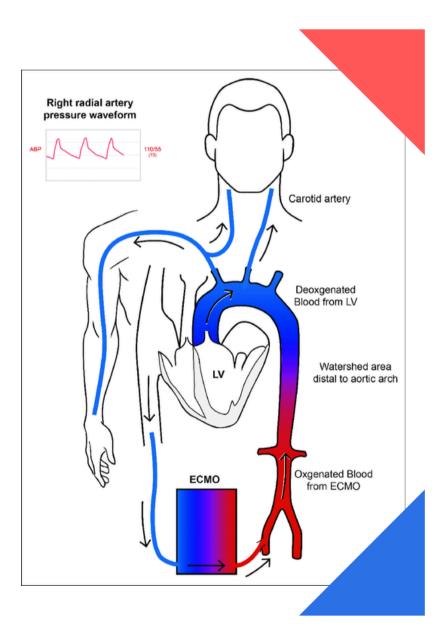
 May not have fever due to circuit temp regulation

ISCHEMIA & END ORGAN FAILURE

- · Stroke or limb ischemia
- Renal injury, lung injury

DELIRIUM & MUSCLE WEAKNESS

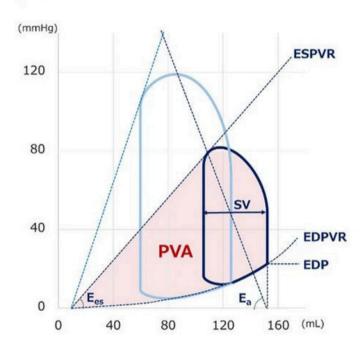
BLEEDING


- bleeding

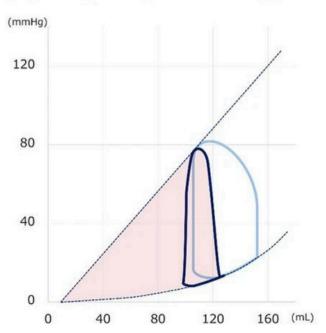
 From prolonged sedation & immobilization · Early mobilization & rehab are crucial

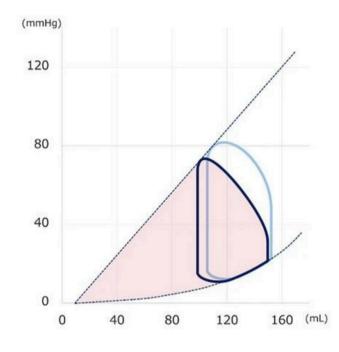
· Cerebral hemorrhage or insertion site

Common complication (30%-40%)

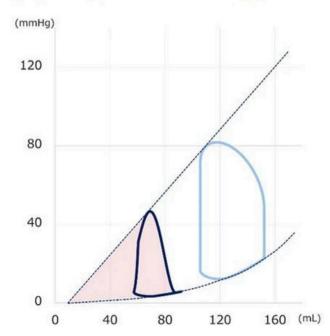


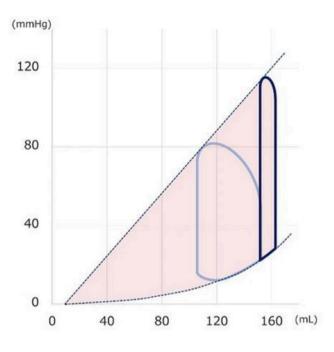
MANAGING LV DISTENSION

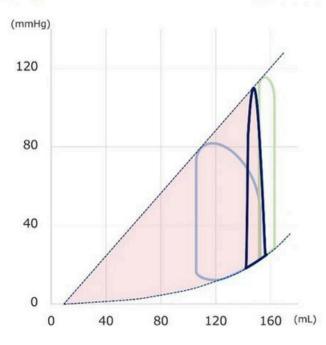

(A) CGS



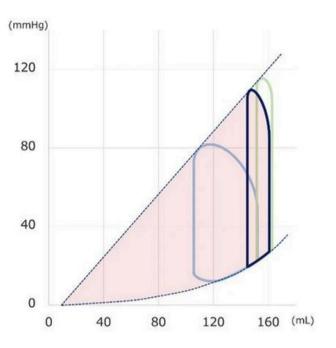
(C) VA-ECMO

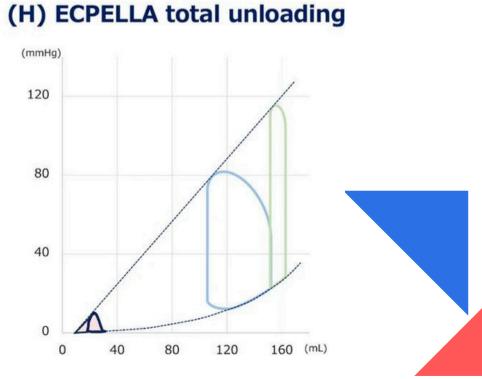



(E) Impella partial support



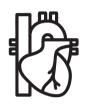
(F) Impella total support





(G) ECPELLA total support

(D) VA-ECMO with IABP



PATIENT SELECTION

 Imminent or resuscitated circulatory collapse Lactate ≥ 8 mmol/L pH < 7.2, base deficit >10 mEq/L CPR (A-modifier) EXTREMIS 	E	Used for LV venting in conjunction with VA ECMO	Used for LV unloading in conjunction with VA ECMO	Possible value as standalone or bridge to destination	Useful as standalone support or ECPR + LV venting
 Stage C but worsening despite initial support Lactate rising & persistently >2 mmol/L Deteriorating hepato-renal function Escalating pressors 	D	UNLIKELY BENEFIT	Uncertain value as standalone support	Probable value as standalone or bridge to destination	Useful as standalone support <u>+</u> LV venting
 Hypoperfusion requiring <u>one</u> intervention (pharmacologic or MCS) CI < 2.2 L/min/m², PCWP > 15 mmHg Lactate ≥2 mmol/L 	С	UNCERTAIN BENEFIT	Probable value as standalone support / part of escalation plan	Probable value as standalone support	NOT INDICATED
 Hypotension <u>without</u> hypoperfusion SBP<90 or >30mmHg difference from baseline MAP<60mmHg Normal lactate BEGINNING 	B	Consider in lieu of inotropes for nonischemic ADHF	Potential value in STEMI with CS, treated with primary PCI	NOT INDICATED	NOT INDICATED
 Normotensive Well-perfused Normal lactate Not currently in shock AT RISK 	A	NOT INDICATED	Probable benefit in elective, high risk PCI	NOT INDICATED	NOT INDICATED
		IABP	Impella 2.5/CP	TandemHeart	VA ECMO

REFERRAL CRITERIA

Worsening Cardiogenic Shock

Rising lactate, worsening hepatorenal function, increasing oxygen requirements, escalating vasopressor doses

Evaluation for Advanced Heart Failure Therapy

Acute or decompensated heart failure in patients who would be candidates for durable LVAD or transplant

Right Heart Failure

Acute or decompensated RHF (e.g. known pHTN or massive PE)

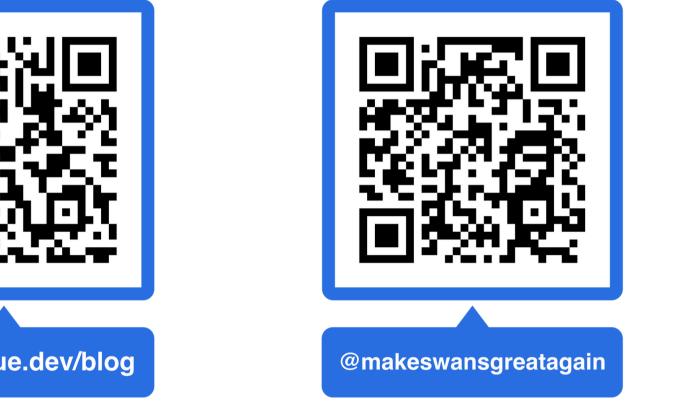
Talking to the Transfer Center

- Involve your cardiologists
- Calculate the SAVE Score
- Have the most recent echo and cardiac cath reports
- Know current vasoactive doses
- Have a destination
- Be concise

SUMMARY & KEY TAKEAWAYS

Recognize cardiogenic shock

Cardiogenic shock is a spectrum of illness characterized by inadequate tissue perfusion. These patients can be relatively well appearing early in their course.


Know your resources and transfer early

Treat patients aggressively and transfer early rather than wait for significant deterioriation. Anticipate which patients may need MCS.

ECMO & MCS saves lives

Studies have had difficulty showing a mortality benefit, but this likely reflects the severity of illness in this population as well as variance in patient selection.

