Basic ECG Interpretation Workshop

Darwin Brown, MPH, PA-C

Disclosure Statement

- No association or financial arrangement with any vendor or pharmaceutical company.

Objectives

- Analyze the basic ECG components required to assess pathology to include, heart rate, rhythm, axis, and intervals.
- Develop a simple method that will allow you to consistently assess unknown ECGs for common pathologies.
- Identify the common variances within normal ECGs.
- Describe the specific diagnostic criteria for normal ECGs, Bundle branch blocks, IVCDs and Fascicular Blocks.

Basic Assumption

- I assume that you do not know or remember much about ECGs.

First Things First

- Coming from a Primary Care Perspective
- Evaluate an ECG the same way each time
- Develop a system to accomplish this process
- Force yourself to practice

Waveforms

One Method

- Gestalt or general impression
- Determine the Heart Rate
- Determine the Rhythm
- Measure the Longest Interval in the Limb Leads
- Determine the Axis
- Assess the R-Wave Progression

Gestalt: Normal

Gestalt: or Abnormal

One Method

- Gestalt or general impression
- Determine the Heart Rate
- Determine the Rhythm
- Measure the Longest Interval in the Limb Leads
- Determine the Axis
- Assess the R-Wave Progression

Heart Rate Determination

Starting point
Zero
Stopping Point
80 bpm

Heart Rate for Irregular Rhythms

Rhythm Determination

Is the distance between one QRS complex the same as the others?
If yes, rhythm is considered Regular.
If no, rhythm is considered Irregular.

One Method

- Gestalt or general impression
- Determine the Heart Rate
- Determine the Rhythm
- Measure the Longest Interval in the Limb Leads
- Determine the Axis
- Assess the R-Wave Progression

PR, QRS, QT Intervals

PR Normal: 120 - 200 ms
QRS Normal: < 120 ms
QT Normal: Heart rate dependent:

PR Interval

- Measure from start of P wave to start of QRS
- Best measured in limb lead II
- Conduction through the AV node
- Normal:
- 120 ms to 200 ms
-3 to 5 boxes
- Short PR Interval
- Preexcitation synd.
- WPW, LGL
- PACs
- Long PR Interval
- Lots of causes, don't really care about cause
- Refer to as: "First Degree AV Block"

QRS Interval

- Beginning of QRS to the end (J-point)
- Normal: < 120 ms (less than 3 boxes)
- Use the Limb Lead with longest QRS to measure
- Causes of Prolonged QRS interval:
- Bundle Branch Blocks, IVCD, WPW, LVH, RVH,
- Rhythm: ventricular tach, PVCs, idoventricular rhythm

QT Interval

- Measures a complete ventricular cycle
- From beginning of ventricular depolarization to ventricular repolarization
- Measure from start of QRS to end of T-wave
- Normal is defined based on heart rate
- HR of $60=400 \mathrm{~ms}$; HR of $100=320 \mathrm{~ms}$
- Simple rule:
- The QT is probably prolonged if it exceeds more than HALF of the R-R interval.
- Rule works well as long as HR is not excessive

One Method

- Gestalt or general impression
- Determine the Heart Rate
- Determine the Rhythm
- Measure the Longest Interval in the Limb Leads
- Determine the Axis
- Assess the R-Wave Progression

Axis Determination

- Based on the frontal plane (limb leads)
- Ballpark estimates are usually fine, rarely necessary to have specific degrees noted
- Utilize the Quadrant Method
- Based on two limb leads: I and aVF
- Normal is based on quadrant

Quadrant Method

- From the ECG, looking at Limb Lead I, determine the net deflection of the QRS complex (Positive, Negative, equal)
- Plot this on your axis diagram
- Next, from the ECG, looking at Limb Lead aVF, determine the net deflection of the QRS complex (Positive, Negative, equal)
- Plot this on your axis diagram
- Where the areas cross over, this is the quadrant in which the axis lies.

Axis Pathology

- Left Axis Deviation
- Left Bundle Branch Block
- Left Ventricular Hypertrophy
- Inferior Wall MI
- Left Anterior Fascicular Block
- Right Axis Deviation
- Right Bundle Branch Block
- Right Ventricular Hypertrophy
- High Lateral Wall MI
- Left Posterior Fascicular Block

One Method

- Gestalt or general impression
- Determine the Heart Rate
- Determine the Rhythm
- Measure the Longest Interval in the Limb Leads
- Determine the Axis
- Assess the R-Wave Progression

R-wave Progression

- Precordial Chest leads V1 - V6
- R wave progresses from V1 through V6
- Descriptive term only, does not imply pathology
- Terminology:
- Normal, early transition, late transition
- Causes:
- LVH, RVH, MI, Conduction defects, normal variants, lead misplacement....

R-Wave Progression

Hedramproprorrornopror

What Next

- For each ECG lead, note the following:
- Location and morphology of P-waves
- QRS pattern (presence of Q-waves)
- ST Segment (elevation or depression)
- T wave changes

Review all leads except aVR.

Normal ECG:

The 12-lead ECG morphology for a normal individual is not always uniform. A number of constitutional variables can substantially alter a normal ECG, including sex, age, height, race and anatomic position of the heart within the chest. Lead placement, variations in technique and different machines can also distort a normal ECG.

Helpful Criteria:

* P-waves upright in I, II, V2-V6
* T-waves upright in I, II, V3-V6, Inverted in aVR

Variable in III, aVL, aVF, V4-V6

* Small Q-waves normal in I, aVL, V4-V6
* Deep Q-waves (QS) normal in aVR, and occasionally seen in leads III and V_{1}

Helpful Criteria:

* P-waves upright in I, II, V2-V6
* T-waves upright in I, II, V3-V6, Inverted in aVR Variable in III, aVL, aVF, V4-V6
- Small Q-waves normal in I, aVL, V4-V6
- Deep Q-waves (QS) normal in aVR and occasionally seen in leads III and V1

Let's Practice

Bundle Branch Blocks

Simplified Diff. Wide-QRS Complex

Differential for Wide-QRS Complex

- Hyperkalemia
- Ventricular tachycardia
- Idioventricular rhythm, including heart block
- Drug effects and overdose (esp. tricyclics)
- Wolff-Parkinson-White
- Bundle Branch Blocks and Idioventricular conduction delays (IVCD)
- Ventricular premature contractions
- Aberrantly conducted complexes
- In order of descending mortality

Do I have a Bundle Branch Block?

- Diagnostic criteria
- Width of the QRS complex
- $\geq 120 \mathrm{~ms}$ is Always abnormal
- If QRS is < 120 ms , NOT a BBB

Right Bundle Branch Block

- Diagnostic criteria:
- QRS $\geq 120 \mathrm{~ms}$
- Axis is RAD or Normal (can be LAD with LAFB)
- rSR' pattern $V_{1}-V_{2}$
- Slurred S-wave in I and V_{6}
- NSSTT changes in $\mathrm{V}_{1} \& \mathrm{~V}_{2}$
(Non-specific ST-T wave changes)

RBBB

Left Bundle Branch Block

- Diagnostic criteria:
- QRS ≥ 120 ms
- Axis is Normal or LAD
- Wide monomorphic S-waves in $\mathrm{V}_{1}-\mathrm{V}_{4}$
- Wide monomorphic R-wave in I and V_{6}
- NSSTT changes in most leads

LBBB

How do I Differentiate between Left and Right BBB?

- RBBB
- QRS $\geq 120 \mathrm{~ms}$
- Axis is RAD or Normal (can be LAD with LAFB)
$-r S R^{\prime}$ pattern $V_{1}-V_{2}$
- Slurred S-wave in I and V_{6}
- NSSTT changes in $\mathrm{V}_{1} \& \mathrm{~V}_{2}$
- LBBB
- QRS $\geq 120 \mathrm{~ms}$
- Axis is Normal or LAD
- Wide monomorphic Swaves in $V_{1}-V_{4}$
- Wide monomorphic Rwave in I and V_{6}
- NSSTT changes in most leads

Let's Practice

Intraventricular Conduction Delay

QRS Widening

Typical LBBB

Fascicular Blocks

Pathology

- Disruption of the Left Ventricular conduction system, resulting in the ventricles being innervated asynchronously and abnormally. Results in altered vectors produced by the ventricle.

Left Anterior Fascicular Block

- ECG Criteria:
- Axis $\geq 45^{\circ}$
- No other cause of axis deviation present
- Normal QRS duration (100-110 ms)
- Small Q in lead I, small R in lead III (q1r3 pattern)

Left Anterior Fascicular Block

Left Posterior Fascicular Block

- ECG Criteria:
- Axis $\geq 100^{\circ}$
- No other cause of axis deviation present
- Normal QRS duration (100-110 ms)
- Small R in lead I, small Q in lead III (r1q3 pattern)

Left Posterior Fascicular Block

Let's Practice

Bifascicular Blocks

- Involves RBBB with either LAFB or LPFB
- RBBB with LAFB is very common and stable
- RBBB with LPFB is also more common than LPFB by itself and is more unstable
- The RBBB is the dominant ECG finding, associated with a axis deviation

WPW Exception

- Diagnostic criteria for WPW
- PR interval < 120 ms with a normal looking P-wave
- Wide QRS complex: 110 ms or greater
- Presence of "delta-wave" (initial slurring or QRS)
- Secondary ST-T changes

WPW

Summary

- Three important Take Home points!
- Develop a "system" to evaluate ECGs
- Practice does Improve Interpretative abilities
- Work with a good reference to improve skills

Unknown \#1

Unknown \#2

Unknown \#3

Unknown \#4

Unknown \#5

Unknown \#6

References

- Clinical Electrocardiography: a simplified approach, 7th ed, Goldberger AL.
- 12-Lead ECG: The art of interpretation, 2nd ed, Garcia TB.
- Up to date

Contact Information

Darwin Brown, MPH, PA-C
 Creighton University PA Program

darwinbrown@creighton.edu

