
The Role and Concerns with Dual Mobility Components in Primary and Revision Hip Arthroplasty

Paul F. Lachiewicz MD

Consulting Professor

Duke Orthopaedic Surgery

Disclosures

- Royalties: Innomed
- Editorial Board: JSOA, J Arthroplasty
- Consultant: Gerson Lehrman Group, Pacira Guidepoint Global, Mallinckrodt, Innocoll Heron Therapeutics, Intellisphere, Quomeda
- Speaker's Bureau: Heron Therapeutics, Mallinckrodt, Ceramtec
- Institutional Research support: Zimmer

None related to dual mobility components

Dual Mobility Components

- Long history of designs, use in Europe
 Renewed interest in North America and release of new designs
- Alternative to constrained liners
- Alternative to large femoral heads

First Dual Mobility Hip

- Introduced by Bousquet for primary THA in 1970's
 - 22.2 mm metal inner head
 - 40-50 mm polyethylene head which articulated with a stainless steel acetabulum

Presumed Biomechanics Dual Mobility


- Greater range of motion with 2 articulations ?
 "3rd articulation" neck-poly contact ?
- Increased jump distance large poly head, with 42-64 mm
- Little lab data on ROM (manufacturers)

Retrievals: neck-poly contact in all (MDM)
 Nebergall et al J Arthroplasty 2016
 Adam et al Orthop Traum Surg Res 2014

Biomechanics of Tripolar Range of Motion

 Mayo hip simulator
 Tripolar vs conventional hip
 Increased flexion, adduction, and external rotation
 Internal rotation increased 45° at 90 degrees flexion

Guyen et al Clin Orthop 2007

Biomechanics in vitro

3-D CT cadaver hip model:
 no difference in range of motion between
 36 mm head and ADM 50-56 mm (44-50) !!

Klingenstein et al J Arthroplasty 2013

Wear Data in vitro

- 2.5 million cycles in MTS hip simulator
- Gravimetric measurements converted into volumetric wear
- ADM 28 mm head, 48 mm X3 poly, 54 mm shell Fixed bearing 28 mm head, 48 mm poly Fixed bearing 48 mm head, 54 mm shell
- ADM 2.3 mm³ ± 1.1
 Fixed 28 mm 3.8 mm³ ± 1.2
 Fixed 48 mm 30.7 mm³ ± 1.2

Loving et al J Arthroplasty 2013

Wear Data *in vitro* Adverse Conditions

- MDM 28/42/54 mm and 22.2/36/48 mm
 Metal on poly 28/54 mm
- 2.5 million cycles
- Gravimetric wear analysis

- Component at 50° and 65° abduction angle
- No differences between DM and MoP except higher wear of MoP at 65°, with eccentric wear

Available European Designs

- Serf Novae (Orthodynamics)
- Mobilite (Tournier)
- **ADES** (Didienne Sante)
- H-Max and M2 (Lima)
- Integra cup (Groupe Lepine)
- Versafit (Medacta)
- DMS cemented (SMS Paris)
- EVORA uncemented (SMS Paris)

Available USA Designs

Stryker ADM X3 poly Stryker MDM X3 poly

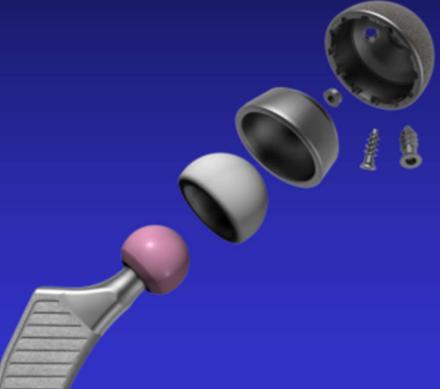
Available USA Designs

Biomet Active Articulation Vitamin E-1 poly (being discontinued) Smith + Nephew PolarCup stainless steel bearing

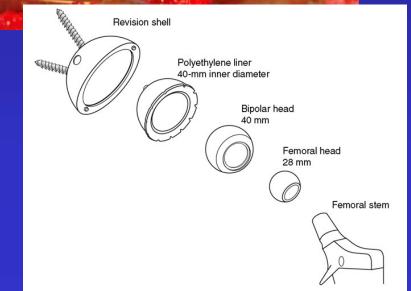
Available USA designs


Medacta Versafit DM

Medacta Mpact DM


Modular DM ZimmerBiomet Vit E poly or Arcom XL metal or ceramic head

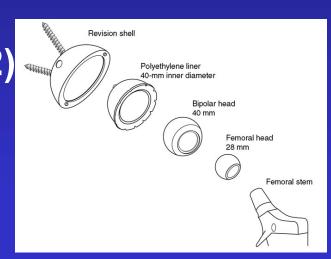

New Revision Modular DM Not available in USA



Surgeon-fabricated Tripolar

Revision shell
40 XLP liner
Standard bipolar with 40 OD
Caveats:
maximum size 40 mm inner liner may not be XLP

Loose cemented socket, but "modular" 26 mm femoral head unable to be removed !



Results of Surgeon-fabricated Tripolar

- 30 hips
- 47% revised for recurrent dislocation
- 2 to 4 year (mean 3) followup
- 3 dislocations (10%)
- Re-revised for dislocation (2)

Levine et al J Arthroplasty 2008

Possible Indications for DM Primary THA

- Femoral neck fracture
- Prior lumbar spine arthrodesis
- Concomitant lumbar spine deformity
- Concomitant neurological disorder
- Dislocation of contralateral THA
- Other "high-risk" patients

Possible Indications for DM Revision THA

- Recurrent dislocation, without obvious cause
- Revision of m-m resurfacing
- Revision of m-m large head THA
- Revision of hemiarthroplasty for dislocation
- 2nd -stage reimplantation for infection
- Alternative to constrained in "young" patient?
- Failure of constrained liner ?

Operative Techniques

Ream acetabulum Press-fit shell; screw fixation Trial reduction Impact metal articular surface Place femoral head into poly using press-clamp Impact head/poly onto taper Reduce poly into shell liner

Revision for Recurrent Dislocation

Revision of large head metal-metal THA

High risk for dislocation High risk abductor muscle-tendon necrosis

Dual mobility polyethylene placed against monobloc metal shell or hip resurfacing shell

- Off-label use
- Permits retention of a wellfixed, well-positioned shell
- No ASR shells (sharp inner edge)
- 2 papers

Studies of dual-mobility polyethylene against retained metal shell

- Multicenter Plummer et al J Arthroplasty 2017
 25 revisions (14 THA, 11 resurfacings)
 No ASR[®] shells 2 year follow-up
 One failure: early, acute intra-prosthetic dislocation
- Fehring et al unpublished Hip Society 2015
 34 DM vs 114 formal acetabular revisions
 one dislocation DM vs 20% complications revision

Revision of dislocated or failed constrained liner ?

(n=2; both successful)

1 year postop constrained

2 years postop DM

Revision of failed constrained liner with modular DM

- 14 patients with failed constrained liner
- Mean # surgeries 5; 50% > constrained liner
- 10 successful
 - 4 dislocated: 2 had closed reduction
 - **1 IP dislocation-open**
 - **1** resection
- Reasonable salvage

Chalmers, Trousdale et al Clin Orthop 2018

Results of DM in Revision for recurrent dislocation

• Retrospective, level IV

Follow-up mean 3-7 yrs

Success 90-100%

Table 1 Results of Dual-mobility and Tripolar Components for Recurrent Dislocation Follow				Table 1 (continued) Results of Dual-mobility and Tripolar Components for Recurrent Dislocation Following Total Hip Arthrop			
Levine et al ^e	UTP	30	14 (47)	3 (2-4)	3 (10)	2 (6.7)	1 (3.3)
Guyen et al ¹⁵	DM	51	51 (100)	4 (2-7)	3 (5.9)	2 (3.9)	3 (5.9)
Hamadouche et al ¹⁶	DM	47	47 (100)	4 (2-6)	2 (4.3)	2 (4.3)	1 (2.1)
Leiber-Wackenheim et al ¹⁷	DM	50	50 (100)	8 (6–11)	1 (2)	None	2 (4)
Langlais et al ¹³	DM	85	5 (5.9)	0.00			F (F 0)
Grigoris et al 18	UTP	8	8 (100)	3 (2–5)	1 (1.2)	1 (1.2)	5 (5.9)
Philippot et al ¹⁴	DM	156	26 (16)	4 (2-6)	None	None	None
				5 (2-9)	6 (3.8)	None	11 (7.1)
Beaulé et al ¹⁹	UTP	11	11 (100)		None ^a	None	
DM = dual mobility. UTP = u			1281 0	7 (3-12)	1 (10)	1 (10)	4 (40)

^a Hips followed for <2 years were excluded from this analysis.

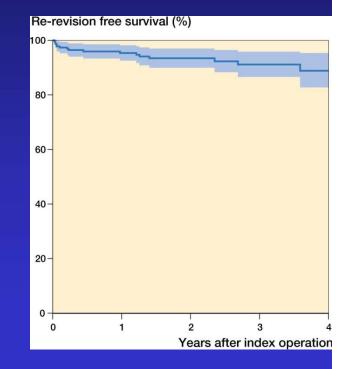
^b Infection, fracture, or loosening

^c Denotes number of subset originally revised for instability in a larger series

DM = dual mobility, UTP = unconstrained tripolar

^a Hips followed for <2 years were excluded from this analysis.</p>

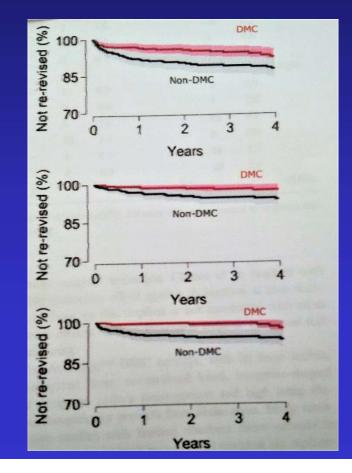
^b Infection, fracture, or loosening


Lachiewicz + Watters JAAOS 2012

Denotes number of subset originally revised for instability in a larger series

DM Revision for Dislocation Swedish Registry

- 228 hips revised for instability
- 25% had a previous revision
- 2 yr non-dislocation 99%
- Risk factors for failure age 50-59 prior revision



DM Revision for Dislocation new Swedish Registry data

- 984 THAs revised for instability
- 436 cemented DM
 355 standard cup (28-36 mm)
- 4 yr survival (reop for dislocation)
 DM 96%
 Std 92% (p=0.001)

Mohaddes et al Intl Orthop 2017

"Double-mobility" acetabulum in revision THA: UK experience

- 149 patients 2005-2009 Saturne DM
- Mean f/u 42 mths (18-68)
- Indications: aseptic loosening 113
 recurrent dislocation 29
- 2% early dislocation (3, all with abductor deficiency)
- Literature review: 10 studies, 645 revisions
 3% re-dislocation rate (288 recurrent dislocations)

Vaskutty et al Bone and Joint J 2012

Results MDM® Duke Orthopaedics series

- 64 hips (20 men, 43 female patients)
- Revision indications

Recurrent dislocation 42%

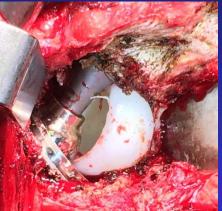
Metal-metal25%Reimplant infection 17%Acetabular loosening, other16%

- Two dislocations, reduced follow-up 3 yrs
- 14% infection; acetabular loosening 1.3%

Systematic reviews Dual Mobility in revision THA

- DeMartino et al (HSS) BJJ 2017
 59 papers 5064 hips dislocation 3 %; intra-prosthetic 1.3%
- Darrith et al (Rush) BJJ 2018
 54 papers 3008 hips dislocation 2.2 %; intra-prosthetic 0.3%

Systematic reviews Dual Mobility in revision THA


 Levin et al J Arthroplasty 2018
 9 papers ("modern" DM) dislocation 2.2 % intra-prosthetic 0.3 % (meta-analysis: compared to fixed bearing OR 0.24)

 Reina et al (Mayo) J Arthroplasty 2019
 6 papers systematic review of DM compared to fixed bearing dislocation 2.2 % DM 7.1 % fixed (OR 3.59)

Dual Mobility will not "save you"

- Acetabular malposition
- Impingement due to skirted neck

 Massive loss of abductor muscle tissue (>50% loss of posterior abductors AAOS ICL 2018 Mr Stephen A Jones)

Mechanisms of failure of DM Components

Dislocation of polyethylene from metal shell (reduction possible)

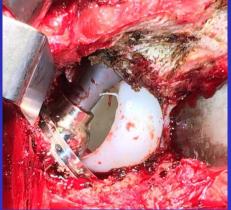
 Dislocation of metal or ceramic head from polyethylene (open reduction?)

Acute Early Dissociation

 Pull out of femoral head from large polyethylene "ball"

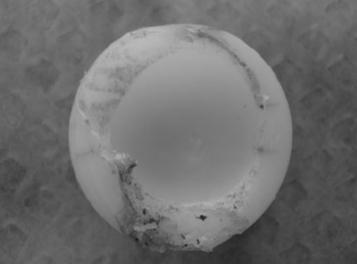
Case reports of 2 designs

Causes:


 Impingement of skirted
 head or taper ?
 Closed reduction maneuver
 without GA

Salvage of Acute Intra-prosthetic Dissociation


Generally recommended: revise to constrained Another DM ? larger; no "skirt"



Chronic Intra-prosthetic Dislocation late wear phenomenon

Polyethylene wear ! 4 of 168 primary THA 5-7 yrs f/u Hamadouche et al Clin Orthop 2012

Iliopsoas tendon impingement with DM components ?

- Cadaver + fluoroscopy
- Direct pressure on large poly head
- Cause of persistent groin pain ?
- Related to intraprosthetic dislocation ?
- Not clinically reported

Nebergall et al J Arthroplasty 2016 Photo: courtesy Muratoglu et al MGH lab

Elevated metal levels from modular MDM [®] component ?

- 100 primary THA (90 pts) 2 yr f/u
- Most 22-mm metal head
- MARS MRI in 4 with pain, ↑ cobalt (ALTR in 2 !) Think from TMZF trunnion? Matsen Ko et al J Arthroplasty 2015
- 22 patients MDM (all ceramic heads)
- mean f/u 4 yrs
- mean Co 0.26 Chr 0.82

Chalmers et al BJJ 2019

Conclusions Dual Mobility for THA

- Theoretical advantages of increased ROM, and increased stability
- Indications in primary THA -- evolving
- Indications: revision for recurrent dislocation, alternative to constrained, all revisions?
- Will DM work when abductors deficient?

• More data and longer followup required !

Possible Concerns Dual Mobility

- Elevated metal levels with modular metal; use ceramic head ?
- Acute early intraprosthetic dissociation: dislocation reduction manuever ?
- Chronic intraprosthetic dislocation: polyethylene wear + impingement
- Long-term success of newer designs ?