

Multiligamentous Knee Injury

Kostas Economopoulos, MD Assistant Professor Mayo Clinic Arizona

Disclosures

Consultant for Arthrex

Outline

- Types
- Anatomy
- Evaluation and Assessment
- Treatment
- Post-operative rehabilitation

Definition

- Defined as a tear of two or more of the four major ligamentous structures about the knee
 - Anterior Cruciate Ligament (ACL)
 - Posterior Cruciate Ligament (PCL)
 - MCL
 - LCL
 - Posteromedial Corner (PMC)
 - Posterolateral Corner (PLC)

Causes

- High energy
- Low velocity
- Ultra-low velocity

Epidemiology

Increasing rates of injury in literature

- .001 events/100 pt years (Kennedy 1963)
- .0125 events/100pt years (Levy 2009)
- .072 events/100 pt years (Arom 2013)
- 53-72% are males
- 17% open vs 83% closed

Associated Injuries

- Vascular Injury (up to 30%)
- Nerve Injury (up to 40%)
- Fractures (60%)

Classification

- Timing
 - Acute < 3 weeks
 - Chronic > 3 weeks
- Force
 - Low Energy
 - High energy
- Open Vs. Closed

Kennedy Classification

Schenck Classification

Table. Anatomically Based Knee Dislocation Classification System	
KD-I	Single cruciate + collateral injury
KD-II	ACL and PCL injury
KD-III M	ACL, PCL, and MCL injury
KD-III L	ACL, PCL, and LCL + PLC injury
KD-IV	ACL, PCL, MCL, and LCL + PLC injury
KD-V	Dislocation + fracture

Abbreviations: ACL, anterior cruciate ligament; LCL, lateral collateral ligament; MCL, medial collateral ligament; PCL, posterior cruciate ligament; PLC, posterolateral corner.

ACL Anatomy

2 bundles

- AM: tight in flexion
 - Restrain anterior tibial translation
- PL: tight in extension
 - Rotational stability
- 90% of knee dislocations involve the ACL
- Leads to loss of restraint in the A-P direction and rotational stability

PCL Anatomy

- Keystone to ligamentous stability of the knee in MLI
 Central pivot point for knee
- Injury leads to translational, rotational and coronal instability
- 78-87% of all knee dislocations

Anatomy

Lateral Structures of the Knee

Layer I

- IT band
- Biceps femoris
- Fascia

Common peroneal nerve runs between layer I and II

Layer II

- LCL
- Patellar retinaculum
- Patellofemoral ligament
- Lateral geniculate artery runs between layer II and III

Layer III

- Arcuate ligament
- Coronary ligament
- Popliteus tendon
- Popliteofibular ligament
- Capsule

Posterolateral Corner

Anatomy

MAYO CLINIC Medial side typically thought of in three layers, however they blend together

Medial Structures of the Knee		
Layer I	 Deep fascia of thigh enclosing Sartorius Anteriorly blends with medial patellar retinaculum Posteriorly blends with deep fascia covering gastroc 	
Gracilis, semitendinosus, saphenous nerve run between layer I and II		
Layer II	 Superficial MCL Semimembranosus Posterior oblique ligament 	
Layer III	 Deep MCL Capsule Coronary ligaments 	

Posteromedial Corner

Posterior Knee Anatomy

Evaluation and Assessment

- Need high index of suspicion, especially in low energy injuries
 - 50% of knee dislocations reduce spontaneously prior to evaluation
- High energy injuries are typically evaluated by ATLS protocol initially
- Tertiary exam can often pickup more subtle injuries
- Missed diagnosis with delayed treatment can be catastrophic

Vascular Injuries

- Vascular injuries described in 5-32% of MLI
- KDIII-L injuries have the highest rate of vascular injury
- 20-30% could result in limb amputation, increasing to 80% is ischemia is greater than 8 hours.
- The rate of vascular injury requiring surgical intervention estimated at 5.63%
- Obesity and open injuries increase risk of vascular injury

Evaluation

- Neurovascular status should be evaluated immediately
 - Posterior tibial pulse, Dorsalis pedis pulse, and distal nerve function
- Prompt reduction of dislocation is imperative
- Reduction can be attempted/performed without x-rays in patients without pulses (on field)

MAYO CLINIC

ŢŢ

Common Peroneal Nerve Injuries

- 14-40% of MLI develop CPN injury
- 31-75% of CPN injuries spontaneously improve
- Younger age is the only factor that predicts better outcomes

Electorphysiology Testing

- Electromyography (EMG) and Nerve Conduction Velocity (NCV)
 - Baseline at 6 weeks if deficiency continues
 - Repeat at 3 and 6 months if recovery not full
 - Positive sharp waves
 - Fibrillation potentials
 - Chronic denervation
 - Fasciculations

CPN Injury Treatment

- AFO
- PT to prevent equinovarus deformity

Surgery for CPN Injury

- Neurolysis if PLC going to be reconstructed
- 95% improved 1 strength grade for dorsiflexion
- Nearly 50% improved 3 strength grades
- Good results seen even 3 months after injury

Thoma et al. Plast and Rec Surg 2001

Nerve Repair

- End to end repair
- CPN not in continuity and zone of injury is small
 - 16 of 19 patients increased motor strength by 3 grades or higher
 - Repair can be done up to 12 months (3-6 months best)

Kim et al. Neurosurg 2004

Nerve Grafting

- Cable Grafting
- After 3 months with no improvement and no clinical or electrical evidence of CPN reinervation
 - 75% increased strength by 3 grades if graft <6 cm
 - 38% if 6-12cm
 - 16% if 13-24cm

Stabilization

- Knee should be stabilized post reduction and standard radiographs performed
 - Knee immobilizer
 - External Fixator

Surgical Emergencies

- Vascular injury
- Compartment syndrome
- Irreducible dislocation (rare)
- Open injury

Physical Exam

- Thorough evaluation of all ligaments is necessary
- Most reliable examination is immediately following injury (least amount of post-traumatic swelling)
- Complete tertiary examination
- Understand mechanism

Anterior Cruciate Ligament

- Anterior Drawer
- Lachman
- Pivot Shift

Posterior Cruciate Ligament

- Posterior Drawer
- Posterior Sag
- Dial Test

Medial/Lateral Collateral Ligament

Varus and Valgus stress at 0 degrees and 30 degrees

- Grade I 0-5 mm of opening
- Grade II 5 to 10 mm of opening
- Grade III >10 mm of opening

Posterolateral Corner Injury

- External Rotation Recurvatum Test
- Dial Test

MAYO CLINIC

Imaging

- Radiographs
 - Fractures
 - Tibial spine avulsion
 - PCL avulsion
 - MCL avulsion
 - Gerdy's avulsion
 - Biceps, LCL avulsion
 - Segond fracture
- MRI once patient is able

 Patients with chronic injuries require alignment films

Treatment

- When?
- What?
 - Non-operative versus Operative
 - Structures to repair/reconstruct
- How?
 - Staged versus one setting
 - Repair versus reconstruction
 - Allograft versus autograft
 - Surgical technique

Goals of treatment

In order of importance

- 1. To save one's leg (vascular intervention)
- 2. To get the patient back to everyday life activities without pain
- 3. To get back to low-impact activities (bicycle, swimming, elliptical, walking)
- 4. To higher impact activities without contact (running, basketball, etc)
- 5. To get back to all sporting, including contact activities. (Karate, Jiu Jitsu, Football, etc)

Non-operative treatment

Should be considered in the following patients:

- Critically ill patients
- Patients with multiple comorbidities that may preclude surgical intervention
- Certain injury patterns (ie ACL/MCL) in low demand patients or those with significant OA
- Protected early mobilization is key

Am J Knee Surg. 2001 Winter;14(1):33-8.

Operative versus nonoperative treatment of knee dislocations: a meta-analysis.

Dedmond BT¹, Almekinders LC.

Sports Med Arthrosc. 2011 Jun;19(2):167-73. doi: 10.1097/JSA.0b013e3182107d5f.

Outcomes of operative and nonoperative treatment of multiligament knee injuries: an evidencebased review.

Peskun CJ¹, Whelan DB.

Surgical Timing

- Acute versus chronic (<3 weeks, >3 weeks)
- Early surgery (<3 weeks) resulted in higher Lysholm knee scores, IKDC scores, Sports activity scores

J Bone Joint Surg Am. 2004 Feb;86-A(2):262-73.

Surgical management of knee dislocations.

Harner CD¹, Waltrip RL, Bennett CH, Francis KA, Cole B, Irrgang JJ.

Arthroscopy. 2009 Apr;25(4):430-8. doi: 10.1016/j.arthro.2009.01.008.

Decision making in the multiligament-injured knee: an evidence-based systematic review.

MAYO CLINIC

Levy BA¹, Dajani KA, Whelan DB, Stannard JP, Fanelli GC, Stuart MJ, Boyd JL, MacDonald PA, Marx RG.

Staged Treatment Versus One setting

- Studies that support both staged treatment and one stage surgery
- Biomechanical studies cite increasing stress on repaired/reconstructed ligaments for staged tx

Am J Sports Med. 2002 Mar-Apr;30(2):233-8.

The effect of injury to the posterolateral structures of the knee on force in a posterior cruciate ligament graft: a biomechanical study.

LaPrade RE¹, Muench C, Wentorf F, Lewis JL.

Am J Sports Med. 1999 Jul-Aug;27(4):469-75.

The effects of grade III posterolateral knee complex injuries on anterior cruciate ligament graft force. A biomechanical analysis.

LaPrade RE¹, Resig S, Wentorf F, Lewis JL.

Repair Versus Reconstruction

- Repair of the ACL/PCL is not recommended as multiple studies have demonstrated poor results
- PLC repair 37-40% failure rate vs 6-9% for reconstruction

Allograft versus Autograft

- No consensus in literature
- Due to number of structures reconstructed, often not enough autograft tissue
- Cross sectional study noted majority perform allograft reconstruction (74%)

Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23(10):2983-91. doi: 10.1007/s00167-014-3451-1. Epub 2014 Nov 27.

Surgical treatment of multiligament knee injuries.

Cook S¹, Ridley TJ², McCarthy MA³, Gao Y⁴, Wolf BR⁵, Amendola A⁶, Bollier MJ⁷.

Summary

- Surgery
- Acute
- One setting
- Reconstruction
- Allograft

Post-Operative Rehabilitation

- 8 days locked in extension
 - Pain control, inflammation control
 - Gait training
- Protected weight bearing 6 weeks
- PT starting at day 8 with Hinged knee brace
- Goal of 0-90 degrees by 2 weeks
- RTP and activity varies dependent on patient injury, surgeon preference.
- No studies demonstrating one rehab technique superior, most important --> move early

Outcomes

- After surgery, the overall activity level is reduced
- Surgery can restore stability and ROM allowing for ADLs without pain.

Return to Work

 88% return to work but may require modification of work place or job responsibilities.

62% with little or no modification

Everhart et al. Arthroscopy 2018

 90% were able to perform light labor while 65% were able to perform heavy labor

Neri et al. Clin Sports Med 2019

Return to Sport

• 46-68% RTS

Everhart et al. Arthroscopy 2018 Stannard et al. Am J Sports Med 2005

- 65% RTS but only
- 29% of athletes participating in high-level sports were able to return to same level

Neri et al. Clin Sports Med. 2019

Factors Associated with Poor Outcome

- Non-op treatment
- Delayed surgery
- Higher injury severity
- Neurovascular injury
- Obesity
- Age >30

CONCLUSIONS

- MLI can be associated with high-energy injuries
- Watch for ultra-low velocity MLI in obese people
- Vascular status must be closely followed to avoid limb threatening injuries.
- Injury to CPN is common and negatively affects outcomes
- Acute reconstruction of the ligaments is the procedure of choice.

QUESTIONS?

