Re-examining the Gap:

A Wage Gap Between Male and Female PAs Persists
Tim McCall, PhD
Associate Director, Surveys \& Analysis
Noël Smith, MA
Senior Director, PA and Industry Research \& Analysis
American Academy of PAs
@aapaorg

Background

- The wage gap exists, and in recent years more attention has been given to this issue in healthcare and the PA workforce
- The gender wage gap is often reported in raw dollar differences such as "women are compensated 80% for every dollar men are compensated."
- While true, many of these analyses do not statistically control for real occupational differences between men and women
- No existing models for PAs account for various compensation models in health care.
- This study includes productivity-based models as well as hourly models, and several other demographics not considered in past models.

Methods

Instrument: 2019 AAPA Salary Survey, fielded February 1-28, 2019

- Included a battery of personal and workplace demographics, compensation, and benefits for calendar year 2018

Participants: The survey was open to all non-retired, U.S.-based PAs and a subset of data from this survey was analyzed for the present study. A total of 13,088 partial or complete responses were collected from PAs.

Analysis: To be included in the wage gap analysis, the respondent must have completed each question relevant to this work; 8,339 respondents were included.

Wage Gap (Full-time PAs)

Total Compensation

Women's bonuses were smaller, and men were more likely to receive a bonus. 54.5% of male PAs reported receiving a bonus in 2018; 48.1% of women reported the same.

Wage Gap by Years of Experience (FT)

Wage Gap by Major Specialty Area (FT)

Compensation-Relevant Factors by Gender

More Male PAs:

- Take call
- Are in a formal leadership role
- Own/share practice ownership

Male PAs:

- More experienced
- Work more hours
- Work more weeks per year
- See more patients

Variables	All PAs Percent	Female PAs Percent	Male PAs Percent	Sig. Level
Mode of Compensation				
Base Salary	75.4%	75.9%	74.1%	
Hourly	20.5%	20.2%	20.9%	
Productivity pay	4.2%	3.9%	4.9%	$*$
PA took call last year	34.9%	32.3%	40.7%	$* * *$
PA is in formal leadership	10.4%	8.1%	15.4%	$* * *$
PA owns or shares	1.4%	1.0%	2.4%	$* * *$
\quad ownership in practice	All PAs	Female PAs	Male PAs	Sig.
Variables	Mean	Mean	Mean	Level
Years of experience	10.27	9.54	11.88	$* * *$
Hours worked weekly	44.53	43.65	46.49	$* * *$
Weeks worked last year	43.82	43.56	44.40	$* * *$
Patients per week	66.39	64.40	70.82	$* * *$

Notes: For statistical significance, ${ }^{* * *}=p<.001,{ }^{* *}=p<.01,{ }^{*}=p<.05$, either a z-test of column proportions (for percentages) or attest (for means).

Do Practice Demographics "Explain Away" the Gap?

Sequential regression with gender and a gender by experience interaction term in the final step Initial Steps: Compensation-relevant predictors

- Highest level of education completed
- Race
- Ethnicity
- Geographic region of work
- Mode of compensation
- Whether a bonus was received
- Statewide Cost-of-Living Index (COLI)
- Years of experience
- Primary major specialty area
- Primary work setting
- Hours worked weekly
- Weeks worked annually
- Patients seen weekly
- Whether a PA took call
- Leadership roles
- Ownership in a practice

Final Step: Gender as a predictor of compensation

Predicted Total Compensation

Education, Race, and Ethnicity

$\left.$| Variables | Coefficient
 $(\boldsymbol{B} ; \mathbf{\$})$ | 95\% Confidence
 Interval (95 CI; \$) | Standard Error (\$) |
| :--- | :---: | :---: | :---: | :---: | :---: | | Sig. |
| :---: |
| Level | \right\rvert\,

Notes: Thirty-four percent of the variance (adjusted R^{2}) in total compensation was accounted for by the model. Final model $\mathrm{R}^{2}=0.34$, with R^{2} change for gender significant at $p<.001$. Predicted total compensation based on regression model and analysis of covariance was $\$ 113,403.59$ for female PAs and $\$ 122,413.17$ for male PAs, a difference of $\$ 9,010$, or 92.6% women $/ \mathrm{men}$.

For statistical significance ("Sig. Level"), ${ }^{* * *}=\mathrm{p}<.001, * *=\mathrm{p}<.01, *=\mathrm{p}<.05$

Geography, Compensation Type, Bonus, COLI

Variables	Coefficient $(\boldsymbol{B} ; \mathbf{\$})$		95\% Confidence Interval (95 CI; \$)	Standard Error (\$)	Sig. Level
Geographic region (Reference: Midwest)					
Northeast	$-8,618.21$	$[-11,292.85,-5,943.57]$	$1,364.44$	$* * *$	
Southern	$-1,114.49$	$[-3,051.34,822.36]$	988.06		
Western	$3,400.30$	$[982.34,5,818.27]$	$1,233.49$	$*$	
Mode of compensation					
(reference: base salary)					
Annualized hourly wage	$-7,595.51$	$[-9,616.12,-5,574.90]$	$1,030.79$	$* * *$	
Productivity pay	$61,293.18$	$[57,578.86,65,007.49]$	$1,894.81$	$* * *$	
Additional compensation and cost-of-living					
Bonus received	$6,941.55$	$[5,610.69,8,272.42]$	678.92	$* * *$	
2018 cost-of-living index (C2ER)	339.46	$[281.85,397.06]$	29.39	$* * *$	

[^0]
Workplace Experience and Factors

Variables	Coefficient (B; \$)	95\% Confidence Interval (95 CI; \$)	Standard Error (\$)	Sig. Level
Work experience				
Years of experience	827.86	[694.54, 961.38]	68.06	***
Hours worked weekly (primary employer)	467.74	[422.64, 512.84]	23.01	***
Weeks worked last year (primary employer)	591.15	[515.69, 666.60]	38.49	***
Patients per week (primary employer)	138.28	[117.50, 159.05]	10.6	***
PA took call	3,318.21	[1,715.23, 4.921.19]	817.74	***
PA is in a formal leadership role	11,693.66	[9,288.18, 14,099.13]	1,227.12	***
PA owns or shares ownership in practice	20,034.08	[13,895.08, 26,173.08]	3,131.74	***
Primary major specialty area				
(reference: primary care)				
Internal medicine	7,726.85	[5,047.72, 10,405.99]	1,366.73	***
Pediatric subspecialties	6,325.14	[163.18, 12,487.11]	3,143.45	*
Surgical subspecialties	12,663.20	[10,447.73, 14,878.67]	1,130.20	***
Emergency medicine	19,516.41	[16,035.82, 22,997.00]	1,775.58	***
Other	9,591.06	[7,387.06, 11,795.07]	1,124.35	***
No medical specialty	6,807.87	[485.40, 13,130.34]	3,225.33	*
Primary work setting				
(reference: physician office or clinic)				
Hospital	8,199.70	[6,299.25, 10,100.14]	969.49	***
Other	-258.3	[-2,949.16, 2,432.55]	1,372.71	

[^1]
Gender and Gender X Experience

Variables	Coefficient $(\boldsymbol{B} ; \mathbf{\$})$	95\% Confidence Interval (95 CI; \$)	Standard Error (\$)	Sig. Level
Gender				
Female	$-9,009.58$	$[-11,378.59,-6,640.57]$	$1,208.52$	$* * *$
Female x Years of experience	-201.9	$[-365.12,-38.68]$	83.26	$*$

Notes: Thirty-four percent of the variance (adjusted R^{2}) in total compensation was accounted for by the model. Final model $\mathrm{R}^{2}=0.34$, with R^{2} change for gender significant at $\mathrm{p}<.001$. Predicted total compensation based on regression model and analysis of covariance was $\$ 113,403.59$ for female PAs and $\$ 122,413.17$ for male PAs, a difference of $\$ 9,010$, or 92.6% women $/ \mathrm{men}$.

For statistical significance ("Sig. Level"), ${ }^{* * *}=\mathrm{p}<.001,{ }^{* *}=\mathrm{p}<.01,{ }^{*}=\mathrm{p}<.05$

Sequential Regression Model: Total Compensation Among Full and Part-Time PAs

Without controlling for compensationrelevant factors, women were compensated about $\$ 0.85 / \$ 1.00$ that men were.

When controlling for compensationrelevant factors,
this wage gap shrinks to $\sim \$ 0.93 / \$ 1.00$
but the gap widens over time.

Variables	Coefficient (B; \$)	95\% Confidence Interval (95 CI; \$)	Standard Error (\$)	$\begin{gathered} \text { Sig. } \\ \text { Level } \\ \hline \end{gathered}$
Highest level of education completed (reference: master's)				
Associate's	-4,114.62	[-11,637.28, , 2,298.21]	3,835.09	
Bachelor's	1,746.09	${ }^{[-7882,29,4,274.46]}$	1,289.82	
Race (reference: white)				
Black	137.63	[-4,584.50, , 8599.76]	2,408.94	
American Indian or Alaskan Native	5,699.76	$[-6,713.44,18,112.95]$	6,332.44	
Asian	1,417.10	${ }^{[-1,924,55,4,758,75]}$	1,74.70	
Native Hawaian or other Pacific Islander	--8,808.63	[-27,389,21, ,9,71.95]	9,478.66	
Other	67.68	[-5,8441.16,7,186.52]	3,32.96	
Two or more races	-872.85	${ }^{[-6,041.26,4,295.56]}$	2,636.60	
Ethnicity: Hispanic	-656.68	[-4,171.87, 2, 858.52]	1,79.23	
Geographic region (Reference: Midvest)				
Northeast	-8,618.21	[-11,292.85,-5,943.57]	1,364.44	***
Southern	-1,114,49	[-3,051.34,822.36]	988.06	
Western	3,400.30	[982,3, $, 5,818.27]$	1,233.49	*
Mode of compensation				
(reference: base salary)				
Annualized hourly wage	-7,995.51	[-9,616.12,-5,574.90]	1,030.79	***
Productivity pay	61,293.18	[57,578.86, 65,007.49]	1,894.81	***
Additional compensation and cost-ofliving				
Bonus recived	6,941.55	[5,10.69, , ,272.42]	678.92	***
2018 cost-ofiliving index (C2ER)	339.46	[281.85, 397.06]	29.39	***
Work experience				
Years of experience	827.86	[694.54, 961.38]	68.06	***
Hours worked weekly (primary employer)	46.74	[422.64, 512.84]	23.01	***
Weeks worked last yar (primary emploger)	59.15	[51.69, 666.60]	38.49	***
Patients per wek (primary emploger)	138.28	[117.50, 159.05]	10.6	***
PA took call	3,318.21	[1,715.23,4.921.19]	817.74	***
PA is in a formal leadership role	11,693.66	[9,28. 18, 14,099.13]	1,227.12	***
PA owns or shares ownership in practice	20,034.08	[13,895.08, 26, 17.08]	3,131.74	***
Primary major specialty area (reference: primary care)				
Internal medicine	7,72.85	[5,047.72, 10,405.99]	1,366.73	***
Pcdiatric subspecialices	6,325.14	[163.18, 12,487.11]	3,143.45	*
Surgical subspecialties	12,663.20	[10,447.73, 14, 87. 67]	1,130.20	***
Emergency medicine	19,516.41	[16,035.82, 22,997.00]	1,75.58	***
Other	9,591.06	[7,387.06, 11,795.07]	1,124.35	***
No medical specialty	6,807.87	[485.40, 13, 130.34]	3,25.33	*
Primary work setting				
(reference: physician office or clinic)				
Hospital	8,199.70	[6,299.25, 10,100.14]	96.49	***
Other	-258.3	[-2,949.16, 2, 432.5]	1,372.71	
Gender				
Female	-9009.58	[-11,37. 59, -6,640.57]	1,208.52	崖
Female X Yars of experience	-201.9	[-365.12.-38.68]	83.26	*

Discussion

- While the unadjusted wage gap between male and female PAs is 15%, it shrinks to around 7.5% when accounting for factors other than gender
- The adjusted gap in terms of dollars is \$9,009
- Larger than average annual bonus among PAs who received one
- This gap widens by $\$ 201$ for each additional year of work experience.
- All factors in the sequential multiple regression model were significant predictors of wage, except education, race, and ethnicity
- Associated with wages independently, but not significant predictors when controlling for other factors

Future Directions

- Researchers should explore other unmeasured factors that may explain a portion of this difference.
- Exploring lifelong cost estimates of wage, given it worsens with additional work experience
- Policy considerations:
- Banning inquiries (or not requiring disclosure) about previous wages
- Laws requiring compensation statistics for companies be published
- Statistical self-audits within organizations that use regression analyses similar to those employed in this study
- Pay range standardization
- Other ways to reduce managerial discretion in wages

Thank you!

Tim McCall, PhD (tmccall@aapa.org)
Associate Director, Surveys \& Analysis
Noël Smith, MA
Senior Director, PA \& Industry Research \& Analysis
American Academy of PAs
@aapaorg

[^0]: Notes: Thirty-four percent of the variance (adjusted R^{2}) in total compensation was accounted for by the model. Final model $\mathrm{R}^{2}=0.34$, with R^{2} change for gender significant at $\mathrm{p}<.001$. Predicted total compensation based on regression model and analysis of covariance was $\$ 113,403.59$ for female PAs and $\$ 122,413.17$ for male PAs, a difference of $\$ 9,010$, or 92.6% women $/ \mathrm{men}$.

 For statistical significance ("Sig. Level"), *** $=\mathrm{p}<.001, * *=\mathrm{p}<.01$, * $=\mathrm{p}<.05$

[^1]: Notes: Thirty-four percent of the variance (adjusted R^{2}) in total compensation was accounted for by the model. Final model $\mathrm{R}^{2}=0.34$,
 with R^{2} change for gender significant at $\mathrm{p}<.001$. Predicted total compensation based on regression model and analysis of covariance was $\$ 113,403.59$ for female PAs and $\$ 122,413.17$ for male PAs, a difference of $\$ 9,010$, or 92.6% women $/ \mathrm{men}$.

 For statistical significance ("Sig. Level"), ${ }^{* * *}=\mathrm{p}<.001$, ${ }^{* *}=\mathrm{p}<.01$, * $=\mathrm{p}<.05$

