Orthocarolina

Anterior Shoulder Instability

Julian J. Sonnenfeld, M.D.

The Sports Medicine Center The Shoulder and Elbow Center OrthoCarolina

Outline

- Anatomy/Biomechanics
- Clinical Workup
- Traumatic Anterior Instability
- Multidirectional Instability (MDI)

Anatomy and Basic Science

Orth@arolina

Laxity = above average ROM/joint translation which is <u>asymptomatic</u>

Instability = pathologic translation of the humeral head during active shoulder use that is <u>symptomatic</u>

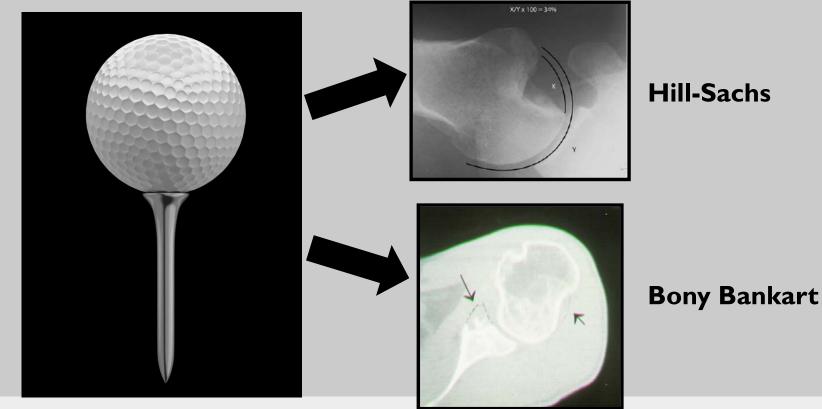
Stabilizing Factors Dynamic

Scapular Rotators

- Create a stable glenoid platform
- Maximize rotator cuff efficiency for articular compression

Rotator Cuff

- Centers the humeral head, stabilizing against anterior and inferior translation
 - Biceps a secondary stabilizer at lower elevation



Stabilizing Factors Static

• Bone

• Like a golf ball on a tee...

Orth@arolina

Stabilizing Factors Static

• Labrum

Increases concavity, but mild contribution

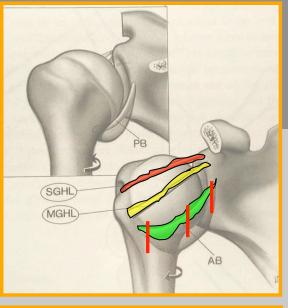
Speer ID IS 1004 continuing the lebruin increases anterior translation by only

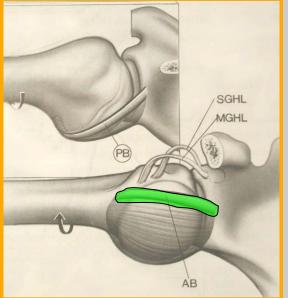
Stabilizing Factor Static

• **GLENOHUMERAL LIGAMENTS**: Structural

thickenings of capsule.

- Selective cutting studies (O'Brien AJSM 1990, Warner AJSM 1992):
- <u>SGHL</u>: supraglenoid tubercle →LT
 - Inferior stability: Prevents Inferior Translation/ER in positions of adduction
 - Posterior stability: Prevents posterior translation in positions of FF, Add, IR


• <u>MGHL</u>: labrum \rightarrow LT


- Inferior stability: Prevents inferior translation/ER at ~45 of abduction
- Anterior stability: Prevents anterior translation in midrange positions (ie. 45-60 abduction/ER)

• **<u>IGHL</u>**: labrum \rightarrow LT

- Ant/Inf Stability: "Hammock effect" = ant/post bands prevent ant/post/inf translation at abduction >60 degrees
 - Ant band IGHL primary restraint to anterior translation in 90/90 position

***Injury can occur at the labral interface (ALPSA), midsubstance, or off the <u>humerus (HAGL)</u>

Clinical Workup

Classification

Traumatic
 Unidirectional
 Bankart lesion
 Stabilization/Surgery

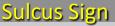
Atraumatic
 Multidirectional
 Bilateral
 Rehab
 Inferior capsular shift

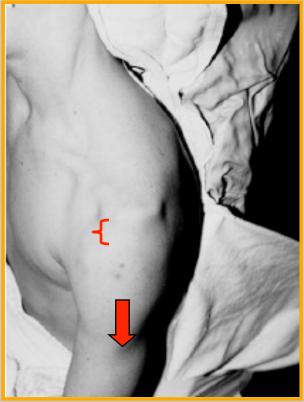
Orth@arolina

- Place them on the TUBS-AMBRI spectrum
 - Circumstances of first event, and all recurrences
 - Any problems on other shoulder, other joints

Closed Reduction

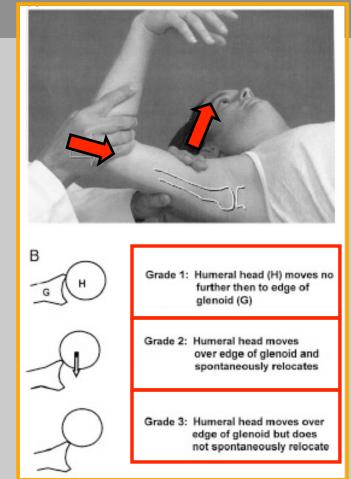
- Traction/Countertraction
 - Assistant at head with axillary sheet
- Stimson
 - Prone with weight (axial traction in flex)





Physical Exam

- •Stability •<u>Inferior</u> •Sulcus •<u>Anterior</u>
 - Load shift: highly specific but poorly sensitive
 - Apprehension/Relocation


Abnormal if 2+ (>2cm) or more
SGHL/CHL lax if sulcus persists in ER

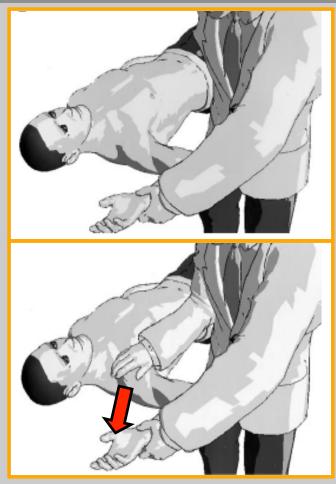
Physical Exam

- •Stability •Inferior •Sulcus •Anterior
 - Load shift: highly specific but poorly sensitive
 - Apprehension/Relocation

Load Shift

Accuracy improved when patient asleep

Physical Exam


Stability
Inferior
Sulcus
Anterior

• Load shift: highly specific but poorly sensitive

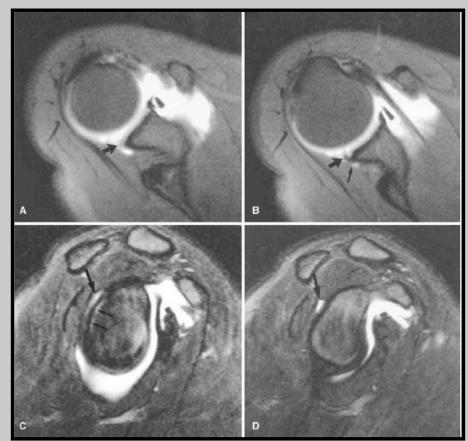
• Apprehension/Relocation

Most accurate (85%) when apprehension (vs. pain) is the symptom that occurs and is relieved: 70% sensitive, 100% specific

Apprehension/Relocation

Orth@arolina

Imaging Plain Films


- True AP
 - Should see ant/post glence
- AP int rotation
 - Hill-Sachs
- Scapular Lateral
- Axillary

Imaging MRI


- Not necessary for diagnosing a labral tear:
 - A good PE may be as accurate...
 - Liu et al AJSM 1996: sensitivity/ specificity of 59%/85% for MRI vs. 90%/85% for PE
 - ...most acute dislocations will have a classic labral tear:
 - *Taylor and Arciero AJSM 1997:* 97% of first time dislocators with Bankart lesion

Imaging MRI

- But provides important information for operative planning
 - Labral extension
 - Capsular injury (HÅGL)
 - Bui et al: present in 1-9%
 - Cuff injuries
 - Bone loss

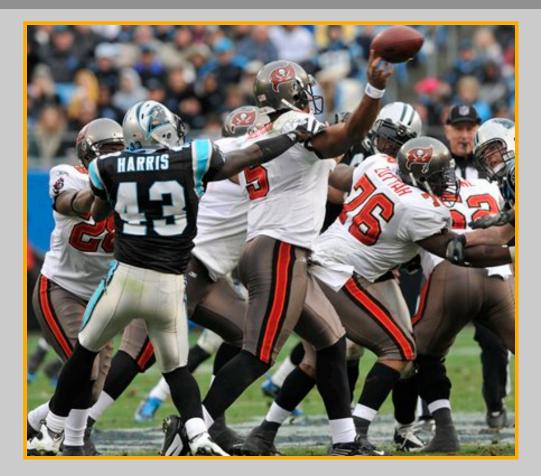
Imaging CT with 3D Recon

Valuat

- Infercircl
- ? 3E

Orth@arolina

Traumatic Anterior Instability (TUBS)

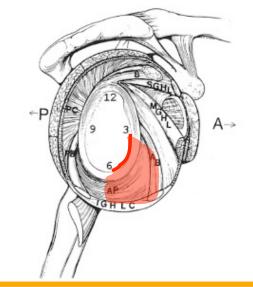


History

- Epidemiology
 - 11.2 per 100K
 - 90% anterior

Presentation

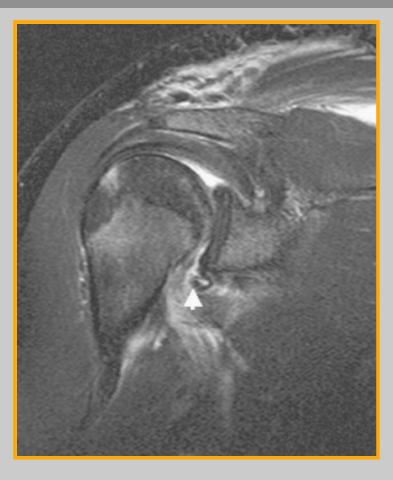
 Traumatic: stiff arm (rugby) vs. ER/abduction (football)



Pathoanatomy

- The essential lesion is compromise of the anterior IGHL complex:
 - Most often involves a combination of anterior glenoid labral tear and capsular stretching...
 - 97% with anterior labral tears ("Bankart") (Taylor AJSM 1997)
 - ..., but capsule stretches FIRST (Bigliani et al JOR 1992)

***Must address both labral and capsular elements during surgery



Pathoanatomy

- But can also occur with capsular avulsion from the humeral side ("HAGL")
 - Taylor et al: 2% with HAGL
 - *Bui et al*: 1-9%, occurring both anteriorly and posteriorly

Natural History

- Recurrence rates of traumatic anterior instability are predictable
 - Age: 15-20 = 70-100% 20-30 = 50-60%; >30 = 30%
 - Gender: $F = \frac{1}{2}M$
 - Associated bone loss:
 - Glenoid
 - >25-30% glenoid bone loss = 89% failure rate in contact athletes
 - Humeral Head
 - Hill-Sachs lesions of only 13% can increase recurrence

Natural History

Recurrent dislocations damage the joint

- Hovelius JSES 2009: prospective 25 yr data.
 - Arthropathy not significantly different between one-time dislocators vs. those with a few events prior to surgery (18 vs. 26%)
 - But... for chronic dislocators: 39%

Nonsurgical Options

Generally do not work well

• IR bracing

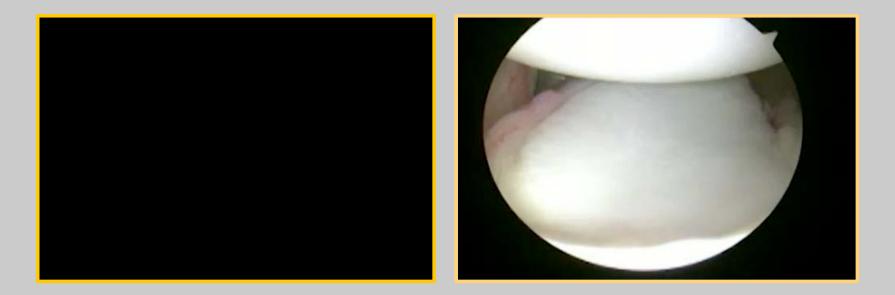
- *Hovelius JBJS 1996*: prospective 10 yr study with patients randomized to IR x 3-4 wks vs. sling for comfort
 - No difference in recurrence rates

• ER bracing

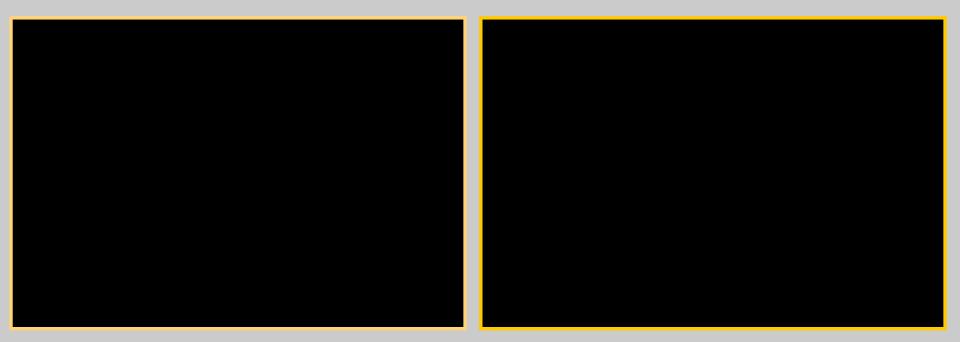
- *Itoi et al JBJS 2007*: prospective RCT of first time dislocators, IR vs. ER x 3 wks.
 - Significant risk reduction for patients <30 yrs (50-60% recurrence for IR vs. 20-40% for ER)
 - RTP only 60% in both groups
 - Finestone et al JBJSBr 2009: RCT with 100% compliance; NO DIFF

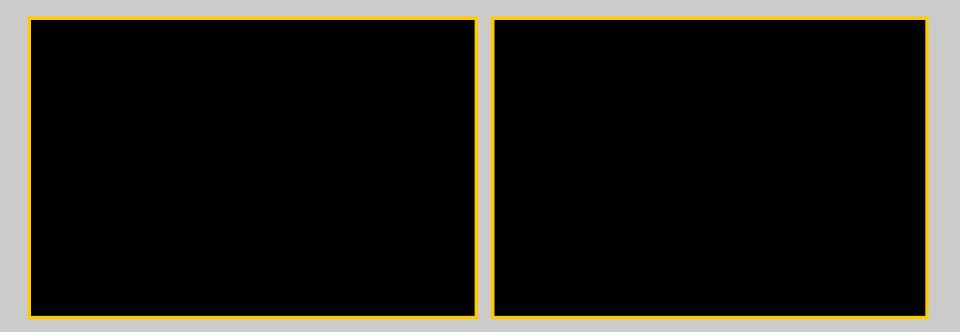
• Thus... OK to mobilize quickly

• Buss et al AJSM 2004: RTP in-season with 40% recurrence, no change in ultimate surgical procedure or outcome


Current approach in high risk patients is usually operative

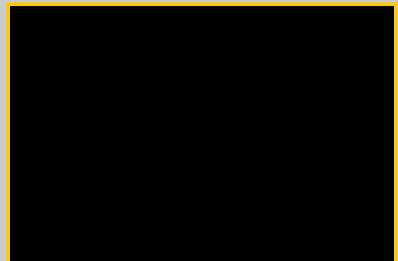
ADDRESS THE PATHOANATOMY


DIAGNOSTIC SCOPE


MOBILIZE LABRUM

PREPARE GLENOID

ANCHORS

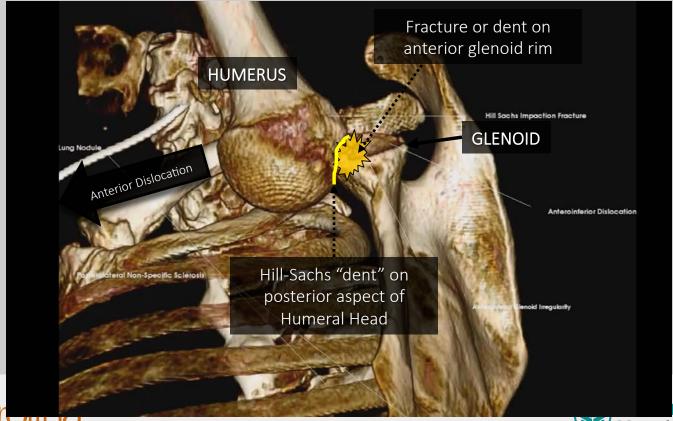


BEFORE REPAIR

AFTER REPAIR

View from Posterior Portal

View from Superior Portal



Bone Loss

• Glenoid and Humeral bone loss can increase the risk of recurrence.

Musculoskeletal Institute

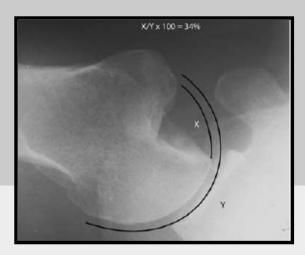
• Glenoid and Humeral bone loss can increase the risk of recurrence.

Glenoid

- >13.5% bone loss = worsened outcome scores (WOSI) (Shaha AJSM 2015, Shin AJSM 2017) and recurrent instability
- Burkhart ar recurrent i

"Inverted Pear"

rthop 2017) have ~90%

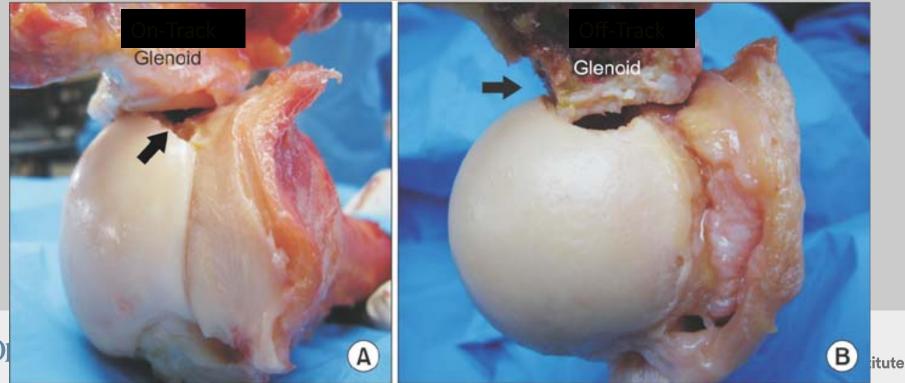


Orth@arolina

• Glenoid and Humeral bone loss can increase the risk of recurrence.

• Humerus ("Hill-Sachs")

- Any "Off-Track" lesion (>25-30% almost always will be) likely to be significant.
 - Sekiya 2010: >12.5% of articular arc will destabilize the shoulder at 60 degrees
 - Charrouset 2010: Depth >15-20% of HH diameter = >60% recurrence



Glenoid and Humeral bone loss can increase the risk of recurrence.

Have an additive effect when both present...

• "On-Track" vs. "Off-Track" – Yamamoto JSES 2007

Treatment Bone Loss

• Glenoid and Humeral bone loss can increase the risk of recurrence.

• Have an additive effect when both present...

• *Tokish et al OJSM 2015*: Presence of "Off-Track" bone loss resulted in 75% recurrent instability if not addressed

 Arciero et al AJSM 2015: Small (8-15%) glenoid defects become significant when paired with Hill Sachs lesions (1.47 cm³, 0.87cm³, resp.)

•>30% on either side will likely be significant in most patients if not addressed (15% significant if combined and Off-Track)

Treatment Bone Loss

- Options for glenoid bone restoration
 - If +bony bankart, repair the fragment
 - Arthroscopic (anchors) vs. ORIF (cannulated screws)
 - If no bone fragment left, take bone from elsewhere***
 - Coracoid (Latarjet)
 - ICBG (auto or allo)
 - Distal tibial OC graft
 - Distal clavicle

***None perfectly recreate axial and longitudinal curvature (Willemot Arthroscopy 2017), and... 10X complication rate + 30% failure of TSRs s/p Latarjet (Willemot JSES 2018)

Treatment Bone Loss

• Options for Hill-Sachs lesions:

- Remplissage (30-40%)
 - *Elkinson JBJS 2012* (cadaveric) and Bah et al OTSR 2017 (clinical): 30% defects effectively stabilized when remplissage added to Bankart
 - Downside: decreased ER
 - Nourissat AJSM 2011, Franceschi AJSM 2012:
 - No difference in ER
 - Less recurrence than with Bankart alone
- Latarjet (30-40%)
 - Bah et al OTSR 2017: low recurrence rate, and better ROM/pain than Remplissage

• OC grafts (>40%)

- Diklic JBJS 2010, Miniaci Tech S/E 2004
 - High rate of stabilization
 - Up to 30% complication rate
- Prosthetic replacement

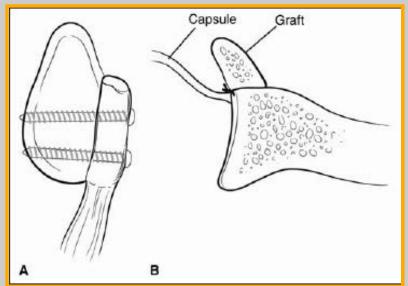
Treatment My Algorithm**

**assumes no repairable bony Bankart

• Preop Assessment of Bone Loss with CT...

• Isolated Glenoid:

- 15-25% = patient specific factors
- 25-35% = Latarjet
- >35% = distal tibial OC graft


• Isolated Hill-Sachs:

- On-Track = ignore
- Off-Track = Remplissage (OC graft if >40%)

• Combined Defects (minimum 8% glenoid, "Off-Track" Hill Sachs)

- <15% glenoid = usually Bankart + Remplissage (unless revision or *high* risk)
- >15% glenoid = bone augmentation+/-Remplissage *(esp. if HS >30%, Patel AJSM '16)*

Orthocarolina

Institute

Current Approach Summary

- •The chief goal of treatment is to minimize recurrence while maintaining activity level
- Nonsurgical treatment does not alter recurrence
 - Early mobilization and RTP is acceptable in many patients
- Surgical treatment is indicated in patients with a high risk of recurrence
 - The best results can be expected if all relevant pathoanatomy is addressed

Orth@arolina

Multidirectional Instability (MDI)

Spectrum

"Classic" (Neer)

- Capsular laxity
- Multiple loose joints
- Probably collagen disorder
- Neuromuscular imbalance?

Traumatic MDI

- Specific event(s)
- "Bidirectional"
- Not systemic (ie. opposite shoulder and other joints with "normal" laxity)
- Extensive labral tear

Orth@arolina

Pathoanatomy of MDI

Proposed:

- Redundancy of the Inferior Glenohumeral Ligament Complex → Increase capsular volume
- Large Rotator Interval
- Neuromuscular (?)
- Other possible contributors:
 - Loss of (-) pressure
 - Flat glenoid
 - Scapular version

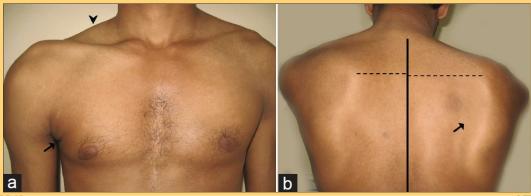
MDI has two defining clinical features:

• Symptoms occur in midrange of glenohumeral motion when the ligaments are normally lax

• Symptoms in 2 or more directions, with one of them *inferior*.

- Symptoms result from inability of dynamic stabilizers to compensate
 - Cuff bursitis/biceps tendonitis
 - Neck / Scapular pain
 - Neurological symptoms
- Worsened complaints with muscular fatigue

BEWARE of voluntary dislocators/psychosocial comorbidities


Physical Examination

- Inspect
 - Symmetry/muscle wasting
- Neuro exam
 - r/o scapular winging (trap, serratus palsy)
 - Deltoid and/or cuff dysfunction

Atrium Health


usculoskeletal Institute

Physical Examination Systemic Laxity

Elbow hyperextension

Orthocarolina

Thumb MP flexion to forearm

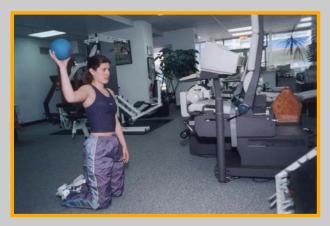
Sulcus Sign

Symptoms reproduced?

Orth@arolina

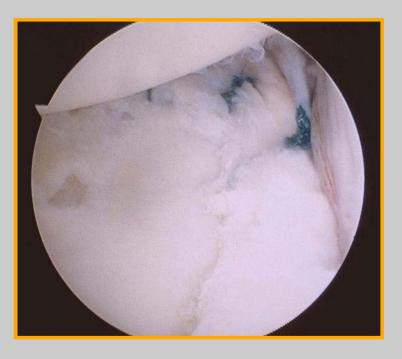
Nonoperative Treatment

- Patient Education
- Physical Therapy
 - Rotator Cuff exercises
 - IR for anterior component/ ER for posterior component



≥ 6 Months Rx

• Burkhead and Rockwood, JBJS 1992: HEP x >6 mo with 80% G/E results


Goals of Surgical Treatment for Instability

Tighten ligaments/reduce capsular volume

Address all pathology (including RI if lax)

• Repair labrum

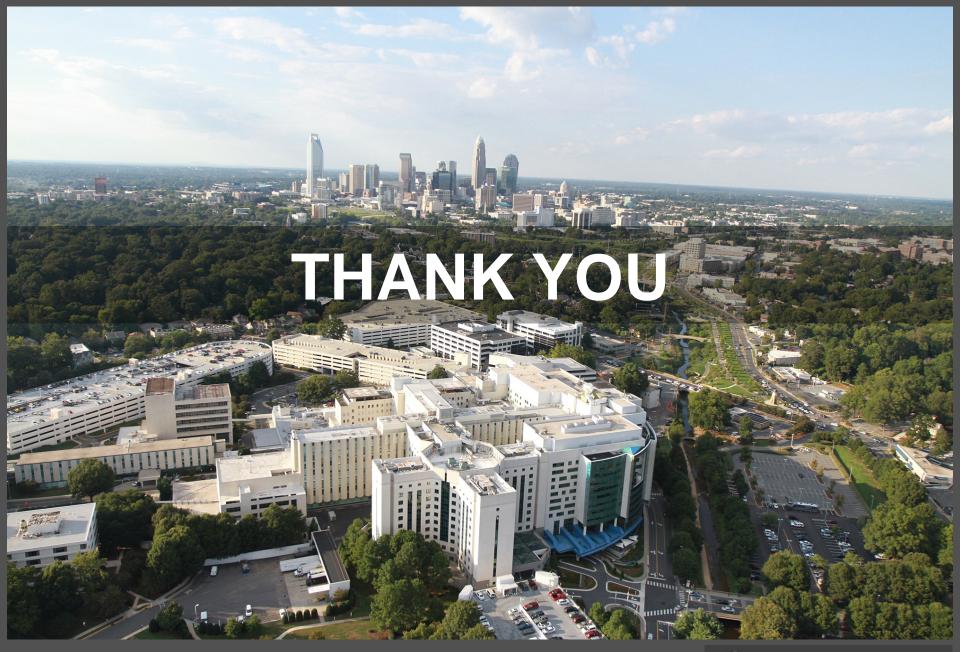
• Anchors

Outcomes

Open

-85+% G/E results Neer and Foster JBJS 1980: no recurrences Posterior approach in select cases Cooper JBJS 1992: 86% success Anterior approach in

Arthroscopic


•~90+% G/E results

- Gartsman et al: capsular plication with RI closure = 7% recurrence, mean ER 90
- Kim et al: posteroinferior labral repair/capsular plication with RI closure = 3% recurrence, mean loss ER 2 degrees

Orthocarolina

all

